Мультиплексирование и демультиплексирование

Продвижение данных

Итак, пусть маршруты определены, записи о них сделаны в таблицах всех транзитных узлов, все готово к выполнению основной операции – передаче данных между абонентами (коммутация абонентов).

Для каждой пары абонентов эта операция может быть представлена несколькими (по числу транзитных узлов) локальными операциями коммутации. Прежде всего отправитель должен выставить данные на тот свой интерфейс, с которого начинается найденный маршрут, а все транзитные узлы должны соответствующим образом выполнить «переброску» данных с одного своего интерфейса на другой, другими словами, выполнить коммутацию интерфейсов. Устройство, функциональным назначением которого является коммутация, называется коммутатором.

 

 

Рис. 5. Коммутатор.

 

Однако прежде чем выполнить коммутацию, коммутатор должен распознать поток. Для этого поступившие данные анализируются на предмет наличия в них признаков какого-либо из потоков, заданных в таблице коммутации. Если произошло совпадение, то эти данные направляются на интерфейс, определенный для них в маршруте.

Коммутатором может быть как специализированное устройство, так и универсальный компьютер со встроенным программным механизмом коммутации, в этом случае коммутатор называется программным. Компьютер может совмещать функции коммутации данных с выполнением своих обычных функций как конечного узла. Однако во многих случаях более рациональным является решение, в соответствии с которым некоторые узлы в сети выделяются специально для коммутации. Эти узлы образуют коммутационную сеть, к которой подключаются все остальные.

 

Чтобы определить, на какой интерфейс следует передать поступившие данные, коммутатор должен определить, к какому потоку они относятся. Эта задача должна решаться независимо от того, поступает на вход коммутатора только один «чистый» поток или «смешанный» поток, являющийся результатом агрегирования нескольких потоков. В последнем случае к задаче распознавания потоков добавляется задача демультиплексирования, то есть разделения суммарного агрегированного потока на несколько составляющих его потоков.

Как правило, операцию коммутации сопровождает также обратная операция – мультиплексирование. При мультиплексировании из нескольких отдельных потоков образуется общий агрегированный поток, который можно передавать по одному физическому каналу связи.

Операции мультиплексирования/демультиплексирования имеют такое же важное значение в любой сети, как и операции коммутации, потому что без них пришлось бы для каждого потока предусматривать отдельный канал, что привело бы к большому количеству параллельных связей в сети и свело бы «на нет» все преимущества неполносвязной сети.

Одним из основных способов мультиплексирования потоков является разделение времени. При этом способе каждый поток время от времени (с фиксированным или случайным периодом) получает физический канал в полное свое распоряжение и передает по нему свои данные. Распространено также частотное разделение канала, когда каждый поток передает данные в выделенном ему частотном диапазоне.

 

 

Рис. 6. Мультиплексор и демультиплексор.

 

 

Разделяемая среда передачи данных

 

Еще одним параметром разделяемого канала связи является количество подключенных к нему узлов. В приведенных выше примерах к каждому каналу связи подключались только два взаимодействующих узла, точнее два интерфейса. В телекоммуникационных сетях используется и другой вид подключения, когда к одному каналу подключается несколько интерфейсов. Такое множественное подключение интерфейсов порождает топологию «общая шина». В этом случае возникает проблема организации совместного использования канала несколькими интерфейсами.

Существуют различные способы решения задачи организации совместного доступа к разделяемым линиям связи. Один из них подразумевает централизованный подход, когда доступом управляет специальное устройство – арбитр, другие – децентрализованный. Внутри компьютера проблемы разделения линий связи между различными модулями также существуют – примером является доступ к системной шине, которым управляет либо процессор, либо специальный арбитр шины. В сетях организация совместного доступа к линиям связи имеет свою специфику из-за существенно большего времени распространения сигналов по линиям связи, поэтому процедуры согласования доступа к линии связи могут занимать слишком большой промежуток времени и приводить к значительным потерям производительности сети. Именно по этой причине разделяемые между интерфейсами среды практически не используются в глобальных сетях.

В локальных же сетях разделяемые среды используются достаточно часто благодаря простоте и экономичности их реализации. Этот подход, в частности, применяется в доминирующей сегодня в локальных сетях технологии Ethernet.

Однако в последние годы стала преобладать другая тенденция – отказ от разделяемых сред передачи данных и в локальных сетях. Это связано с тем, что за достигаемое таким образом удешевление сети приходится расплачиваться производительностью.

И, тем не менее не только в классических, но и в некоторых совсем новых технологиях, разработанных для локальных сетей, сохраняется режим разделяемых линий связи. Например, разработчики технологии Gigabit Ethernet, принятой в 1998 году в качестве нового стандарта, включили режим разделения среды в свои спецификации наряду с режимом работы по индивидуальным линиям связи.