Свойства функций, непрерывных на отрезке

Правило Лопиталя

Применения формулы Тейлора

 

а) Приближенное вычисление значений функции. Если в формуле (4) (или (5)) отбросить остаточный член, то получим приближенное значение функции

 

с точностью до модуля остаточного члена. Если величина то и погрешность этого приближенного равенства будет очень малой. Например, При этом

 

 

б) Вычисление пределов. Ранее мы отметили, что при вычислении предела не достаточно формулы эквивалентности , так как при использовании этой формулы не

исчезает неопределенность. В таких случаях пользуются локальной формулой Тейлора (4), записывая в ней столько слагаемых, чтобы стало возможным ликвидировать неопределенность. В нашем примере поступаем так:

 

Другой способ раскрытия неопределенностей типаили доставляет так называемое правило Лопиталя, к изложению которого мы переходим.

Теорема ЛопиталяПусть функции и в некоторой проколотой окрестности удовлетворяют требованиям:

и непрерывны и дифференцируемы в

 

Если при этом существует(конечный или бесконечный) предел отношения производных: то и существует равный ему предел отношения самих функций:

Теорема ЛопиталяПусть функции и в некоторой проколотой окрестности удовлетворяют требованиям:

и непрерывны и дифференцируемы в

 

Если при этом существует (конечный или бесконечный) предел отношения производных: то и существует равный ему предел отношения самих функций:

Например, для рассмотренного выше предела имеем

 

Лекция 4. Свойства функций, непрерывных на отрезке: ограниченность, достижение наибольшего и наименьшего значений, реализация всех промежуточных значений. Свойства дифференцируемой функции: монотонность, экстремумы. Схема построения графика функции с помощью первой производной

Функция называется непрерывной на отрезке если а) она непрерывна в любой точке а на концах и отрезка непрерывна справа и слева соответственно, т.е. Функции, непрерывные на отрезке, обладают рядом замечательных свойств, сформулированных ниже.

1. Теорема Вейерштрасса Если функция непрерывна на отрезке то она ограничена на этом отрезке, т.е. существует постоянная такая, что

2. Теорема Вейерштрасса Если функция непрерывна на отрезке то она достигает на этом отрезке своих наибольшего и наименьшего значений, т.е. существуют точки такие, что

3.Теорема Больцано-КошиЕсли функция непрерывна на отрезке то каково бы ни было значение существует значение такое, что

4. Теорема Больцано-Коши Если функция непрерывна на отрезке и принимает на концах этого отрезка значения разных знаков то существует хотя бы одно значение такое, что

2. Монотонность функции

Напомним определение монотонных функций.

Определение 1.Говорят, что функция строго возрастает на множестве если для любых из неравенства вытекает неравенство Если же то функция называется строго убывающей на множестве Если же из строгого неравенства между аргументами вытекают нестрогое неравенство между значениями функции, то говорят, что является неубывающей (соответственно невозрастающей ) на множестве Множество всех функций строго возрастающих и строго убывающих образует класс строго монотонных функций; невозрастающие и неубывающие функции образует класс просто монотонных функций.

При исследовании на монотонность функций используются выписанная ранее

Теорема Лагранжа.Если функция непрерывна на отрезке и является дифференцируемой по-крайней мере в интервале то существует точка такая, что

 

Теорема 1.Пусть функциянепрерывна на отрезке и является дифференцируемой по-крайней мере в интервале Тогда справедливы следующие высказывания:

1. если то функция строго возрастает на отрезке ;

2. если то функция строго убывает на отрезке .

Доказательствовытекает из равенства (1), в котором надо положить Действительно, если а (тогда и ), то (см. (1)) будет

выполняться неравенство Это означает, что функция строго возрастает на отрезке . Аналогично доказывается высказывание 2. Теорема доказана.

Замечание 1. Можно показать, что в случае нестрогого знака производной имеет место высказывание:

3. Для того чтобы функция удовлетворяющая условиям теоремы 1, была неубывающей (невозрастающей) на отрезке , необходимо и достаточно, чтобы (соответственно ).

Например, функция строго убывает на любом отрезке так как при и эта функция строго возрастает на так как при