Синтаксическая мера информации
МЕРЫ ИНФОРМАЦИИ
Классификация мер
Для измерения информации вводятся два параметра: количество информации I и объем данных VД.
Эти параметры имеют разные выражения и интерпретацию в зависимости от рассматриваемой формы адекватности. Каждой форме адекватности соответствует своя мера количества информации и объема данных (рис. 2.1).
Рис. 2.1.Меры информации
Эта мера количества информации оперирует с обезличенной информацией, не выражающей смыслового отношения к объекту.
Объем данных VД в сообщении измеряется количеством символов (разрядов) в этом сообщении. В различных системах счисления один разряд имеет различный вес и соответственно меняется единица измерения данных:
в двоичной системе счисления единица измерения — бит (bit — binary digit — двоичный разряд);
Примечание. В современных ЭВМ наряду с минимальной единицей измерения данных "бит" широко используется укрупненная единица измерения "байт", равная 8 бит.
в десятичной системе счисления единица измерения — дат (десятичный разряд).
Пример2.3. Сообщение в двоичной системе в виде восьмиразрядного двоичного кода 10111011 имеет объем данных VД = 8 бит.
Сообщение в десятичной системе в виде шестиразрядного числа 275903 имеет объем данных VД = 6 дит.
Количество информации I на синтаксическом уровне невозможно определить без рассмотрения понятия неопределенности состояния системы (энтропии системы). Действительно, получение информации о какой-либо системе всегда связано с изменением степени неосведомленности получателя о состоянии этой системы. Рассмотрим это понятие.
Пусть до получения информации потребитель имеет некоторые предварительные (априорные) сведения о системе α. Мерой его неосведомленности о системе является функция H(α), которая в то же время служит и мерой неопределенности состояния системы.
После получения некоторого сообщения β получатель приобрел некоторую дополнительную информацию Iβ(α), уменьшившую его априорную неосведомленность так, что апостериорная (после получения сообщения β) неопределенность состояния системы стала Hβ(α).
Тогда количество информации Iβ(α) о системе, полученной в сообщении β, определится как
Iβ(α) = H(α) - Hβ(α),
т.е. количество информации измеряется изменением (уменьшением) неопределенности состояния системы.
Если конечная неопределенность Hβ(α) обратится в нуль, то первоначальное неполное знание заменится полным знанием и количество информации Iβ(α) = H(α). Иными словами, энтропия системы H(α) может рассматриваться как мера недостающей информации.
Энтропия системы H(α), имеющая N возможных состояний, согласно формуле Шеннона, равна:
где pi — вероятность того, что система находится в i-м состоянии.
Дня случая, когда все состояния системы равновероятны, т.е. их вероятности равны Pi =, ее энтропия определяется соотношением
Часто информация кодируется числовыми кодами в той или иной системе счисления, особенно это актуально при представлении информации в компьютере. Естественно, что одно и то же количество разрядов в разных системах счисления может передать разное число состояний отображаемого объекта, что можно представить в виде соотношения
N=mn,
где N — число всевозможных отображаемых состояний;
т — основание системы счисления (разнообразие символов, применяемых в алфавите); п — число разрядов (символов) в сообщении.
Пример2.4. По каналу связи передается n-разрядное сообщение, использующее т различных символов. Так как количество всевозможных кодовых комбинаций будет N=mn, то при равновероятности появления любой из них количество информации, приобретенной абонентом в результате получения сообщения, будет I = log N = п log т — формула Хартли.
Если в качестве основания логарифма принять т, то I = п. В данном случае количество информации (при условии полного априорного незнания абонентом содержания сообщения) будет равно объему данных I = VД, полученных по каналу связи. Для неравновероятных состояний системы всегда I < VД = n.
Наиболее часто используются двоичные и десятичные логарифмы. Единицами измерения в этих случаях будут соответственно бит и дит.
Коэффициент (степень) информативности (лаконичность) сообщения определяется отношением количества информации к объему данных, т.е.
, причем 0<Y<1.
С увеличением Y уменьшаются объемы работы по преобразованию информации (данных) в системе. Поэтому стремятся к повышению информативности, для чего разрабатываются специальные методы оптимального кодирования информации.