Конструкции кожухотрубчатых теплообменных аппаратов
Конструкции современных рекуперативных теплообменных аппаратов поверхностного типа непрерывного действия весьма разнообразны. Рассмотрим наиболее характерные.
Кожухотрубчатые теплообменники представляют собой аппараты, выполненные из пучков труб, скрепленных при помощи трубных решеток (досок) и ограниченных кожухами и крышками с патрубками. Трубное и межтрубное пространства в аппарате разобщены, а каждое из них может быть разделено перегородками на несколько ходов. Перегородки предназначены для увеличения скорости и, следовательно, коэффициента теплоотдачи теплоносителей. Теплообменники этого типа предназначаются для теплообмена между различными жидкостями, между жидкостями и паром, между жидкостями и газами. Типовые конструкции кожухотрубчатых теплообменников применяются в случаях, когда требуется большая поверхность теплообмена.
При нагреве жидкости паром в большинстве случаев пар вводится в межтрубное пространство, а нагреваемая жидкость протекает по трубкам. В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2... 3 раза больше проходного сечения внутри труб. Поэтому при одинаковых расходах теплоносителей, имеющих одинаковое агрегатное состояние, скорости теплоносителя в межтрубном пространстве более низкие и коэффициенты теплоотдачи на поверхности межтрубного пространства невысоки, что снижает коэффициент теплопередачи в аппарате. На рис. 4.5 показаны различные типы кожухотрубчатых теплообменников.
Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров. Так, конденсатор современной паровой турбины мощностью 300 МВт имеет более 20 тыс. труб с общей поверхностью теплообмена около 15 тыс. м2.
Корпус (кожух) кожухотрубчатого теплообменника представляет собой цилиндр, сваренный из одного или нескольких стальных листов. Кожухи различаются, главным образом, способом соединения с трубной решеткой и крышками. Толщина стенки кожуха определяется максимальным давлением рабочей среды и диаметром аппарата, но не меньше 4 мм. К цилиндрическим кромкам кожуха привариваются фланцы для соединения с крышками или днищами. На наружной поверхности кожуха привариваются патрубки и опоры аппарата.
Трубки кожухотрубчатых аппаратов изготовляют прямыми или изогнутыми (U-образными) диаметром от 12 до 57 мм.
Материал трубок выбирается в зависимости от среды, омывающей ее поверхность. Применяются трубки из стали, латуни и специальных сплавов.
Трубные решетки служат для закрепления в них труб при помощи развальцовки, заварки, запайки или сальниковых соединений. Трубные решетки зажимаются болтами между фланцами кожуха и крышки или привариваются к кожуху, либо соединяются болтами только с фланцами свободной камеры (см. рис. 4.5).
Рис. 4.5. Типы кожухотрубчатых теплообменников:
а - одноходовый; б - многоходовый; в - пленочный; г - с линзовым компенсатором; д - с плавающей головкой закрытого типа; е - с плавающей головкой открытого типа; ж - с сальниковым компенсатором; з - с U-образными трубками; 1 - кожух; 2 - выходная камера; 3 - трубная решетка; 4 - трубы; 5 - входная камера; 6 - продольная перегородка; 7 - камера; 8 - перегородки в камере; 9 - линзовый компенсатор; 10 - плавающая головка; 11 –сальник; 12 - U-образные трубы; I, II - теплоносители
Крышки кожухотрубчатых аппаратов имеют форму плоских плит, конусов, сфер, а чаще всего выпуклых или вогнутых эллипсов.
Секционные теплообменники (рис. 4.6) представляют собой разновидность трубчатых аппаратов и состоят из нескольких последовательно соединенных секций, каждая из которых представляет собой кожухотрубчатый теплообменник с малым числом труб и кожухом небольшого диаметра.
В секционных теплообменниках при одинаковых расходах жидкостей скорости движения теплоносителей в трубах и межтрубном пространстве почти равновелики, что обеспечивает повышенные коэффициенты теплопередачи по сравнению с обычными трубчатыми теплообменниками. Простейшим из этого типа является теплообменник «труба в трубе» (в наружную трубу вставлена труба меньшего диаметра). Все элементы аппарата соединены сваркой.
Рис. 4.6. Секционные теплообменники:
а - водяной подогреватель теплосети; б - типа «труба в трубе»; 1 - линзовый компенсатор; 2 - трубки; 3 - трубная решетка с фланцевым соединением с кожухом; 4 - «калач»; 5 - соединительные патрубки
Недостатками секционных теплообменников являются: высокая стоимость единицы поверхности нагрева, так как деление ее на секции вызывает увеличение количества наиболее дорогих элементов аппарата - трубных решеток, фланцевых соединений, переходных камер, компенсаторов и т.д.; значительные гидравлические сопротивления вследствие различных поворотов и переходов вызывают повышенный расход электроэнергии на привод прокачивающего теплоноситель насоса.
Кожухи серийных секционных теплообменников изготовляют из труб длиной до 4 м, внутренним диаметром от 50 до 305 мм. Число труб в секции составляет от 4 до 151, поверхность нагрева от 0,75 до 26 м2, трубы латунные диаметром 16/14 мм. Отношение поверхности нагрева к объему теплообменника достигает 80 м2/м3, а удельный конструкционный вес составляет 50...80 кг/м2 поверхности нагрева.
Спиральные теплообменники (рис. 4.7) состоят из двух спиральных каналов прямоугольного сечения, по которым движутся теплоносители I и II. Каналы образуются металлическими листами, которые служат поверхностью теплообмена. Внутренние концы спиралей соединены разделительной перегородкой. Для обеспечения жесткости конструкции и фиксирования расстояния между спиралями приваривают бобышки. С торцов спирали закрывают крышками и стягивают болтами.
Горизонтальные спиральные теплообменники применяют для теплообмена между двумя жидкостями. Для теплообмена между конденсирующимся паром и жидкостью используют вертикальные спиральные теплообменники. Такие теплообменники применяют в качестве конденсаторов и паровых подогревателей для жидкости.
Рис. 4.7. Типы спиральных теплообменников:
а - горизонтальный; б - вертикальный; 1, 3 - листы; 2 - разделительная перегородка; 4 - крышки; I, II - теплоносители
К достоинствам спиральных теплообменников можно отнести компактность (большая поверхность теплообмена в единице объема, чем у многоходовых трубчатых теплообменников) при одинаковых коэффициентах теплопередачи и меньшее гидравлическое сопротивление для прохода теплоносителей. К недостаткам - сложность изготовления и ремонта и пригодность работы под избыточным давлении не свыше 1,0 МПа.
Пластинчатые теплообменники имеют плоские поверхности теплообмена. Обычно такие теплообменники применяют для теплоносителей, коэффициенты теплоотдачи которых одинаковы.
Недостатками изготовлявшихся до недавнего времени пластинчатых теплообменников являлись малая герметичность и незначительные перепады давлений между теплоносителями.
В последнее время изготовляют компактные разборные пластинчатые теплообменники, состоящие из штампованных металлических листов с внешними выступами, расположенными в коридорном или шахматном порядке. Такие конструкции применяются для теплообмена между жидкостями и газами и работают при перепадах давлений до 12 МПа. На рис. 4.8 представлено несколько конструкций теплообменников такого типа. Благодаря незначительному расстоянию между пластинами (6...8 мм) такие теплообменники весьма компактны. Удельная поверхность нагрева F/V составляет 200...300 м2/м3. Поэтому пластинчатые теплообменники в ряде случаев вытесняют трубчатые и спиральные.
Но такой конструкции присущи следующие недостатки: трудность чистки внутри каналов, ремонта, частичной замены поверхности теплообмена, а также невозможность изготовления пластинчатых теплообменников из чугуна и хрупких материалов и длительная эксплуатация.
В настоящее время в системах теплоснабжения жилищно-коммунальных хозяйств и ряда промышленных предприятий в качестве подогревателей горячего водоснабжения (ГВС) и отопления устанавливаются пластинчатые теплообменники (рис. 4.8) вместо ранее используемых для этих целей традиционных секционных кожухотрубных подогревателей. Это связано с целым рядом обстоятельств и преимуществ:
1. Коэффициент теплопередачи в пластинчатых теплообменниках в 3...4 раза больше, чем в кожухотрубных, благодаря специальному гофрированному профилю проточной части пластины, обеспечивающему высокую степень турбулизации потоков теплоносителей. Соответственно в 3...4 раза поверхность пластинчатых теплообменников меньше, чем кожухотрубных.
Рис. 4.8. Пластинчатый водоводяной теплообменник «Теплотекс»:
а - общий вид; б - схема движения теплоносителей
2. Пластинчатые теплообменники имеют малую металлоемкость, очень компактны, их можно установить в небольшом помещении.
3. В отличие от кожухотрубных они легко разбираются и быстро чистятся. При этом не требуется демонтаж подводящих трубопроводов.
4. В пластинчатом теплообменнике можно легко и быстро заменить пластину или прокладку, а также увеличить его поверхность, если со временем возрастет тепловая нагрузка.
Секционные кожухотрубные теплообменники трудно точно рассчитать на требуемую тепловую производительность и допустимые потери напора, так как поверхность одной секции велика и Достигает 28 м2 (при Dy = 300 мм).
Пластинчатые теплообменники набираются из отдельных пластин, поверхность нагрева которых, как правило, не превышает одного метра. Это обстоятельство в сочетании с оптимально выбранным типом пластины позволяет точно без лишнего запаса выбрать теплопередающую поверхность теплообменника.
По своим техническим характеристикам теплообменники «Теплотекс» являются разборными и одноходовыми; материал пластины - сталь ALSL 316; толщина пластины - 0,5 ...0,6 мм; матерная прокладки - резина EPDM; максимальная рабочая температуря теплоносителя - 150 °С; рабочее давление - 1... 2,5 МПа; расходы воды в зависимости от типа теплообменника от 2 до 100 кг/с; поверхность - от 1,5 до 373 м2.
Ребристые теплообменники применяются в тех случаях, когда коэффициент теплоотдачи для одного из теплоносителей значительно ниже, чем для второго. Поверхность теплообмена со стороны теплоносителя с низким значением α увеличивают по сравнению с поверхностью теплообмена со стороны другого теплоносителя. В таких аппаратах поверхность теплообмена имеет на одной стороне ребра различной формы (рис. 4.9). Как видно из рисунка, ребристые теплообменники изготовляют самых различных конструкций. При этом ребра выполняю» поперечными, продольными, в виде игл, спиралей, из витой проволоки и т.д.
Рис. 4.9. Типы ребристых теплообменников:
а - пластинчатый; б - чугунная труба с круглыми ребрами; в - трубка со спиральным оребрением; г - чугунная труба с внутренним оребрением; д - плавниковое оребрение трубок; е - чугунная труба с двусторонним игольчатым оребрением; ж - проволочное (биспиральное) оребрение трубок; з - продольное оребрение труб; и - многоребристая трубка
Заключение
Обобщить изученные вопросы. Подвести итоги лекции. Ответить на вопросы.
Выдать задание для самостоятельного изучения – изучить материал лекции по конспекту, рекомендуемую литературу.
Задание для самостоятельного обучения:
Тепломассообмен: Учебное пособие для вузов / Ф.Ф. Цветков, Б.А. Григорьев. - 3-е издание. М.: Издательский дом МЭИ, 2006. [66-80]
Кандидат технических наук,
доцент Е.Е.Костылева