Види шкал вимірювань
Розглянемо основні види шкал вимірювань і відповідні групи допустимих перетворень. Усі шкали вимірювань поділяють на дві групи:
1) якісні;
2) кількісні.
Найпоширеніші шкали якісних ознак – порядкова та шкала найменувань. Тому в багатьох галузях результати якісного аналізу можна розглядати як вимірювання за цими шкалами. Кількісні шкали дають змогу виявити кількісні співвідношення між об’єктами. У цьому разі ознака містить і одиницю виміру. До шкал кількісних ознак належать шкали інтервалів, відношень, різниць, а також абсолютна шкала.
За допомогою шкали найменувань (номінальних) можна лише класифікувати об’єкти чи окремі їхні ознаки для їх розпізнавання та виявлення подібності чи того, що вони відрізняються один від одного. У таких шкалах число використовують як назву (ім’я). Номінальні шкали дають змогу пізнавати, розрізняти, ідентифікувати об’єкт. Вони ґрунтуються на таких аксіомах ідентифікації:
v А являє собою В, чи ні;
v якщо А являє собою В, то В являє собою А;
v якщо А являє собою В та В являє собою С, то А являє собою С.
Номінальну шкалу називають також класифікаційною. Справді, у разі її використання кожному об’єкту присвоюється певна позначка, що свідчить про його належність до певного класу. Можна по–різному заміняти позначки, лише забезпечуючи ізоморфізм між системами позначок і стежачи за тим, щоб різні класи отримали різні позначки.
У шкалі найменувань допустимі всі взаємно однозначні перетворення. У ній числа – лише позначки, тобто їх використовують тільки для розрізнення об’єктів. У шкалі найменувань можна порівнювати, наприклад, номери студентських квитків, страхових посвідчень, букв у алфавіті. Нікому при здоровому глузді не спаде на думку додавати чи множити номери телефонів; такі операції не мають сенсу. Ніхто також не буде порівнювати літери й говорити, скажімо, що буква П краща, ніж буква З. Єдина функція вимірювань у шкалі найменувань – це розрізнення об’єктів. Часто лише це й потрібно. Так, шафки в супермаркетах розрізняють за номерами, тобто числам, а в дитячих садках використовують малюнки, бо діти ще не знають чисел.
У порядкових шкалах можна ранжувати об’єкти чи сукупності їхніх ознак за пріоритетом. Числа в цих шкалах відображають порядок розміщення елементів – «місця» (об’єктів або їхніх ознак) за пріоритетом. Порядкові шкали дають змогу показати, що один об’єкт за певною ознакою порівняння кращий, важливіший, ніж інший, або рівноцінний йому. Проте в порядкових шкалах не можна визначити міру домінування, тобто виміряти, наскільки один об’єкт кращий, важливіший за інший. Отже, шкала задає лише порядок переваг альтернатив, а числова система, у яку гомоморфно відображається емпірична система, має лише зберігати цей порядок на множині варіантів рішень. У порядковій шкалі числові значення задано з точністю до монотонного перетворення j(x). Прикладом може бути впорядкування науково–дослідних робіт за важливістю. Крім попередніх аксіом, що виконуються для шкали найменувань, тут діють ще й такі аксіоми впорядкування на множині варіантів рішень:
v якщо А кращий за В чи рівноцінний йому, то В не кращий за А;
v правдиве одне з двох тверджень: або А кращий за В чи рівноцінний йому, або В кращий за А чи рівноцінний йому;
v якщо А кращий за В чи рівноцінний йому і В кращий за С чи рівноцінний йому, то А кращий за С чи рівноцінний йому.
Останнє твердження називається аксіомою транзитивності. У порядкових шкалах допустиме будь–яке взаємно однозначне монотонне перетворення співвідношень об’єктів, і числа призначені не лише для розрізнення об’єктів, але й для встановлення порядку між ними. У порядковій шкалі допустимі всі строго висхідні перетворення. Оцінки експертів, як ми вже зазначали, часто варто вважати виміряними в порядковій шкалі, тому що, згідно з численними дослідами, людина правильніше (і з меншими утрудненнями) відповідає на якісні, (наприклад, порівняльні) запитання, ніж кількісні. Так, їй легше твердити, яка із двох гир важча, ніж зазначити їх масу в грамах.
Шкали інтервалів мають таку властивість: однакові різниці числових значень, виміряні в цих шкалах, відповідають однаковим різницям вимірюваної ознаки. Проте різні шкали можуть мати різні нульові точки відліку (наприклад, шкали для вимірювання температури за Цельсієм і Фаренгейтом). Словом інтервальні шкали дають змогу виміряти «віддаль» між об’єктами, визначити, на скільки одиниць виміру один об’єкт кращий за інший. Можна заміняти одну інтервальну шкалу на іншу в межах лінійного перетворення (j(x) = ах + b, а > 0), тобто числові значення в шкалі інтервалів задано з точністю до лінійного перетворення. У шкалі інтервалів зберігаються відношення різниць числових оцінок, оскільки
За шкалою інтервалів вимірюють потенційну енергію чи координату точки на прямій. У такому разі на шкалі неможливо зазначити ні природний початок відліку, ні природну одиницю виміру. Дослідник має сам задати точку відліку й обрати одиницю виміру. У шкалі інтервалів допустимі лінійні висхідні перетворення, тобто лінійні функції.
Шкали відношень, чи метричні (пропорційні), мають природну нульову точку відліку. Це, наприклад, шкали для вимірювання маси, розмірів об’єктів і т.ін. За їх допомогою можна визначити, у скільки разів один об’єкт більший за інший. Пропорційна шкала, на відміну від інтервальної шкали, має нульову точку відліку, отже допустиме лише пропорційне перетворення (j(x) = ах, а > 0) цієї шкали, і числові значення в шкалі відношень задано з точністю до постійного множника. У ній відношення числових оцінок альтернатив залишаються сталими, бо
де f(х1), f(x2) – числові відповідники альтернатив х1, х2 в якійсь числовій системі, , – в іншій. Як приклад можна взяти вимірювання маси, довжини предметів. Хоч би в яких одиницях не було виміряно масу чи довжину, відношення їх значень залишаться сталими.
Шкали відношень – найпоширеніші серед кількісних шкал у науці й практиці. Вони мають природний початок відліку – нуль. У шкалі відношень вимірюють більшість фізичних одиниць: масу тіла, довжину, заряд. Подібні перетворення (ті, що змінюють лише масштаб) допустимі для шкал відношень.
Припустімо, що ми порівнюємо економічну ефективність двох інвестиційних проектів, використовуючи ціни в гривнях. Нехай перший проект виявився кращим за другий. Якщо ми перейдемо до розрахунків у євро, за фіксованим курсом перерахування, то, очевидно, перший проект має залишитися вигіднішим, аніж другий.
Шкала різниць – частковий випадок шкали інтервалів, коли може змінюватися лише початок відліку, (j(x) = х + b). Як приклад можна взяти різні системи літочислення. У шкалі різниць є природна одиниця виміру, але немає природного початку відліку.
Абсолютною називається шкала, у якій числові значення задано з точністю до тотожних перетворень, тобто допустиме перетворення має вигляд (j(x) = х). В абсолютній шкалі фіксовані й початок відліку, і масштаб. Як приклади візьмемо кількість студентів у групі, шкіл у місті та т.ін. Лише для абсолютної шкали результати вимірювань являють собою звичайні числа. Єдине допустиме перетворення – тотожне.
Окрім названих шести основних типів шкал, іноді використовують й інші (наприклад, гіперупорядкування).