Упражнения
Об аксиоматическом способе построения теории
При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:
- некоторые понятия теории выбираются в качестве основных и принимаются без определения;
- каждому понятию теории, которое не содержится в списке основных, дается определение, в нем разъясняется его смысл с помощью основных и предшествующих данному понятий;
- формулируются аксиомы- предложения, которые в данной теории принимаются без доказательства; в них раскрываются свойства основных понятий;
- каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называют теоремамии доказывают их на основе аксиом и теорем, предшествующих рассматриваемой.
Если построение теории осуществляется аксиоматическим методом, т.е. по названным выше правилам, то говорят, что теория построена дедуктивно.
При аксиоматическом построении теории по существу все утверждения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она должна быть непротиворечивой и независимой.
Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения.
Если система аксиом не обладает этим свойством, она не может быть пригодной для обоснования научной теории.
Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы.
При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом. Но они должны быть равносильными. Кроме того, при выборе той или иной системы аксиом математики учитывают, насколько просто и наглядно могут быть получены доказательства теорем в дальнейшем. Но если выбор аксиом условен, то сама наука или отдельная теория не зависят от каких-либо условий, - они являются отражением реального мира.
Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам. Изучая этот материал, мы должны увидеть, как из основных понятий и аксиом можно вывести всю арифметику натуральных чисел. Конечно, его изложение в нашем курсе будет не всегда строгим - некоторые доказательства мы опускаем в силу их большой сложности, но каждый такой случай будем оговаривать.
1. В чем суть аксиоматического способа построения теории?
2. Верно ли, что аксиома - это предложение, которое не требует доказательства?
3. Назовите основные понятия школьного курса планиметрии. Вспомните несколько аксиом из этого курса. Свойства каких понятий в них описываются?
4. Дайте определение прямоугольника, выбрав в качестве родового понятие параллелограмма. Назовите три понятия, которые в курсе геометрии должны предшествовать понятию «параллелограмм».
5. Какие предложения называют теоремами? Вспомните, какова логическая структура теоремы и что значит доказать теорему.
Лекция 32. Аксиоматическое построение множества целых неотрицательных чисел
План:
1. Основные понятия и аксиомы Пеано. Определение целого неотрицательного числа
2. Сложение целых неотрицательных чисел. Таблицы сложения и умножения.
3. Умножение целых неотрицательных чисел. Законы сложения и умножения.