Области применения ИИС


Интеллектуальные информационные системы проникают во все сферы жизни, поэтому трудно провести строгую классификацию направлений, по которым ведутся активные и многочисленные исследования в области ИИ. Рассмотрим некоторые из них.

  1. Разработка интеллектуальных информационных систем или систем, основанных на знаниях. Это одно из главных направлений ИИ. Основной целью построения таких систем являются выявление, исследование и применение знаний высококвалифицированных экспертов для решения сложных задач, возникающих на практике. При построении систем, основанных на знаниях (СОЗ), используются знания, накопленные экспертами в виде конкретных правил решения тех или иных задач. Это направление преследует цель имитации человеческого искусства анализа неструктурированных и слабоструктурированных проблем. В данной области исследований осуществляется разработка моделей представления, извлечения и структурирования знаний, а также изучаются проблемы создания баз знаний (БЗ), образующих ядро СОЗ. Частным случаем СОЗ являются экспертные системы (ЭС).
  2. Разработка естественно-языковых интерфейсов и машинный перевод. Проблемы компьютерной лингвистики и машинного перевода разрабатываются в ИИ с 1950-х гг. Системы машинного перевода с одного естественного языка на другой обеспечивают быстроту и систематичность доступа к информации, оперативность и единообразие перевода больших потоков, как правило, научно-технических текстов. Системы машинного перевода строятся как интеллектуальные системы, поскольку в их основе лежат БЗ в определенной предметной области и сложные модели, обеспечивающие дополнительную трансляцию «исходный язык оригинала - язык смысла - язык перевода». Они базируются на структурно-логическом подходе, включающем последовательный анализ и синтез естественно-языковых сообщений. Кроме того, в них осуществляется ассоциативный поиск аналогичных фрагментов текста и их переводов в специальных базах данных (БД). Данное направление охватывает также исследования методов и разработку систем, обеспечивающих реализацию процесса общения человека с компьютером на естественном языке.
  3. Генерация и распознавание речи. Системы речевого общения создаются в целях повышения скорости ввода информации в ЭВМ, разгрузки зрения и рук, а также для реализации речевого общения на значительном расстоянии.
  4. Обработка визуальной информации. В этом научном направлении решаются задачи обработки, анализа и синтеза изображений. Задача обработки изображений связана с трансформированием графических образов, результатом которого являются новые изображения. В задаче анализа исходные изображения преобразуются в данные другого типа, например в текстовые описания. При синтезе изображений на вход системы поступает алгоритм построения изображения, а выходными данными являются графические объекты.
  5. Обучение и самообучение. Эта актуальная область ИИ включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний с использованием процедур анализа и обобщения данных. К данному направлению относятся не так давно появившиеся системы добычи данных (Data-mining) и системы поиска закономерностей в компьютерных базах данных (Knowledge Discovery).
  6. Распознавание образов. Это одно из самых ранних направлений ИИ, в котором распознавание объектов осуществляется на основании применения специального математического аппарата, обеспечивающего отнесение объектов к классам, а классы описываются совокупностями определенных значений признаков.
  7. Игры и машинное творчество. Машинное творчество охватывает сочинение компьютерной музыки, стихов, интеллектуальные системы для изобретения новых объектов. Создание интеллектуальных компьютерных игр является одним из самых развитых коммерческих направлений в сфере разработки программного обеспечения. Кроме того, компьютерные игры предоставляют мощный арсенал разнообразных средств, используемых для обучения.
  8. Программное обеспечение систем ИИ. Инструментальные средства для разработки интеллектуальных систем включают в себя:

· специальные языки программирования, ориентированные на обработку символьной информации (LISP, SMALLTALK, РЕФАЛ);

· языки логического программирования (PROLOG);

· языки представления знаний (OPS 5, KRL, FRL);

· интегрированные программные среды, содержащие арсенал инструментальных средств создания систем ИИ (КЕ, ARTS, GURU, G2);

· оболочки экспертных систем (BUILD, EMYCIN, EXSYS Professional, Эксперт), которые позволяют создавать прикладные ЭС, не прибегая к программированию.

9. Новые архитектуры компьютеров. Это направление связано с созданием компьютеров не фон-неймановской архитектуры, ориентированных на обработку символьной информации. Известны удачные промышленные решения параллельных и векторных компьютеров, однако в настоящее время они имеют весьма высокую стоимость, а также недостаточную совместимость с существующими вычислительными средствами.

10. Интеллектуальные роботы. Создание интеллектуальных роботов составляет конечную цель робототехники. В настоящее время в основном используются программируемые манипуляторы с жесткой схемой управления, названные роботами первого поколения. Несмотря на очевидные успехи отдельных разработок, эра интеллектуальных автономных роботов пока не наступила. Основными сдерживающими факторами в разработке автономных роботов являются нерешенные проблемы в области интерпретации знаний, машинного зрения, адекватного хранения и обработки трехмерной визуальной информации.

Признаки классификации ИИС.

Интеллектуальная информационная система основана на концепции использования базы знаний для генерации алгоритмов решения прикладных задач различных классов в зависимости от конкретных информационных потребностей пользователей.

Для ИИС характерны следующие признаки:

· развитые коммуникативные способности;

· умение решать сложные плохо формализуемые задачи;

· способность к самообучению;

· адаптивность.

Каждому из перечисленных признаков условно соответствует свой класс ИИС. Различные системы могут обладать одним или несколькими признаками интеллектуальности с различной степенью проявления.

Средства ИИ могут использоваться для реализации различных функций, выполняемых ИИС. На рис. 2. приведена классификация ИИС, признаками которой являются следующие интеллектуальные функции:

· коммуникативные способности - способ взаимодействия конечного пользователя с системой;

· решение сложных плохо формализуемых задач, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, характеризующейся неопределенностью и динамичностью исходных данных и знаний;

· способность к самообучению - умение системы автоматически извлекать знания из накопленного опыта и применять их для решения задач;

· адаптивность - способность системы к развитию в соответствии с объективными изменениями области знаний.

Рис. 2 Классификация интеллектуальных систем.
Системы с интеллектуальным интерфейсом

Применение ИИС для усиления коммуникативных способностей информационных систем привело к появлению систем с интеллектуальным интерфейсом.

Среди них можно выделить следующие типы:

1. Интеллектуальные базы данных позволяют в отличие от традиционных БД обеспечивать выборку необходимой информации, не присутствующей в явном виде, а выводимой из совокупности хранимых данных.

2. Естественно-языковой (ЕЯ) интерфейс применяется для доступа к интеллектуальным базам данных, контекстного поиска документальной текстовой информации, голосового ввода команд в системах управления, машинного перевода с иностранных языков. Для реализации ЕЯ - интерфейса необходимо решить проблемы морфологического, синтаксического и семантического анализа, а также задачу синтеза высказываний на естественном языке. При морфологическом анализе осуществляются распознавание и проверка правильности написания слов в словаре. Синтаксический контроль предполагает разложение входных сообщений на отдельные компоненты, проверку соответствия грамматическим правилам внутреннего представления знаний и выявление недостающих частей. Семантический анализ обеспечивает установление смысловой правильности синтаксических конструкций. В отличие от анализа синтез высказываний заключается в преобразовании цифрового представления информации в представление на естественном языке.

3. Гипертекстовые системы используются для реализации поиска по ключевым словам в базах данных с текстовой информацией. Для более полного отражения различных смысловых отношений терминов требуется сложная семантическая организация ключевых слов. Решение этих задач осуществляется с помощью интеллектуальных гипертекстовых систем, в которых механизм поиска сначала работает с базой знаний ключевых слов, а затем - с самим текстом. Аналогичным образом проводится поиск мультимедийной информации, включающей кроме текста графическую информацию, аудио - и видео образы.

4. Системы контекстной помощи относятся к классу систем распространения знаний. Такие системы являются, как правило, приложениями к документации. Системы контекстной помощи - частный случай гипертекстовых и ЕЯ-систем. В них пользователь описывает проблему, а система на основе дополнительного диалога конкретизирует ее и выполняет поиск относящихся к ситуации рекомендаций. В обычных гипертекстовых системах, наоборот, компьютерные приложения навязывают пользователю схему поиска требуемой информации.

5. Системы когнитивной графики ориентированы на общение с пользователем ИИС посредством графических образов, которые генерируются в соответствии с изменениями параметров моделируемых или наблюдаемых процессов. Когнитивная графика позволяет в наглядном и выразительном виде представить множество параметров, характеризующих изучаемое явление, освобождает пользователя от анализа тривиальных ситуаций, способствует быстрому освоению программных средств и повышению конкурентоспособности разрабатываемых ИИС. Применение когнитивной графики особенно актуально в системах мониторинга и оперативного управления, в обучающих и тренажерных системах, в оперативных системах принятия решений, работающих в режиме реального времени.

Экспертные системы.

Экспертные системы как самостоятельное направление в искусственном интеллекте сформировалось в конце 1970-х гг. Группа по экспертным системам при Комитете British Computer Society определила ЭС как «воплощение в ЭВМ компоненты опыта эксперта, основанной на знаниях, в такой форме, что машина может дать интеллектуальный совет или принять решение относительно обрабатываемой функции». Одним из важных свойств ЭС является способность объяснить ход своих рассуждений понятным для пользователя образом.

Область исследования ЭС называют «инженерией знаний». Этот термин был введен Е. Фейгенбаумом и в его трактовке означает «привнесение принципов и инструментария из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов». Другими словами, ЭС применяются для решения неформализованных проблем, к которым относят задачи, обладающие одной (или несколькими) из следующих характеристик:

· задачи не могут быть представлены в числовой форме;

· исходные данные и знания о предметной области обладают неоднозначностью, неточностью, противоречивостью;

· цели нельзя выразить с помощью четко определенной целевой функции;

· не существует однозначного алгоритмического решения задачи;

· алгоритмическое решение существует, но его нельзя использовать по причине большой размерности пространства решений и ограничений на ресурсы (времени, памяти).

Главное отличие ЭС и систем искусственного интеллекта от систем обработки данных состоит в том, что в них используется символьный, а не числовой способ представления данных, а в качестве методов обработки информации применяются процедуры логического вывода и эвристического поиска решений.

ЭС охватывают самые разные предметные области (рис. 2), среди которых лидируют бизнес, производство, медицина, проектирование и системы управления. Во многих случаях ЭС являются инструментом, усиливающим интеллектуальные способности эксперта. Кроме того, ЭС может выступать в роли:

· консультанта для неопытных или непрофессиональных пользователей;

· ассистента эксперта-человека в процессах анализа вариантов решений;

· партнера эксперта в процессе решения задач, требующих привлечения знаний из разных предметных областей.

 

Рис 3. Области применения экспертных систем.

 

Для классификации ЭС используются следующие признаки:

· способ формирования решения;

· способ учета временного признака;

· вид используемых данных и знаний;

· число используемых источников знаний.

По способу формирования решения ЭС можно разделить на анализирующие и синтезирующие. В системах первого типа осуществляется выбор решения из множества известных решений на основе анализа знаний, в системах второго типа решение синтезируется из отдельных фрагментов знаний.

В зависимости от способа учета временного признака ЭС делят на статические и динамические. Статические ЭС предназначены для решения задач с неизменяемыми в процессе решения данными и знаниями, а динамические ЭС допускают такие изменения.

По видам используемых данных и знаний различают ЭС с детерминированными и неопределенными знаниями. Под неопределенностью знаний и данных понимаются их неполнота, ненадежность, нечеткость.

ЭС могут создаваться с использованием одного или нескольких источников знаний.

В соответствии с перечисленными признаками можно выделить четыре основных класса ЭС (рис. 4): классифицирующие, доопределяющие, трансформирующие и мультиагентные.

Рис. 4 Основные классы экспертных систем

Классифицирующие ЭС решают задачи распознавания ситуаций. Основным методом формирования решений в таких системах является дедуктивный логический вывод.

Доопределяющие ЭС используются для решения задач с не полностью определенными данными и знаниями. В таких ЭС возникают задачи интерпретации нечетких знаний и выбора альтернативных направлений поиска в пространстве возможных решений. В качестве методов обработки неопределенных знаний могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика.

Трансформирующие ЭС относятся к синтезирующим динамическим экспертным системам, в которых предполагается повторяющееся преобразование знаний в процессе решения задач. В ЭС данного класса используются различные способы обработки знаний:

· генерация и проверка гипотез;

· логика предположений и умолчаний (когда по неполным данным формируются представления об объектах определенного класса, которые впоследствии адаптируются к конкретным условиям изменяющихся ситуаций);

· использование метазнаний, более общих закономерностей для устранения неопределенностей в ситуациях.

Мультиагентные системы - это динамические ЭС, основанные на интеграции нескольких разнородных источников знаний. Эти источники обмениваются между собой получаемыми результатами в ходе решения задач. Системы данного класса имеют следующие возможности:

· реализация альтернативных рассуждений на основе использования различных источников знаний и механизма устранения противоречий;

· распределенное решение проблем, декомпозируемых на параллельно решаемые подзадачи с самостоятельными источниками знаний;

· применение различных стратегий вывода заключений в зависимости от типа решаемой проблемы;

· обработка больших массивов информации из баз данных;

· использование математических моделей и внешних процедур для имитации развития ситуаций.