Определение. Поверхностный интеграл называется потоком векторного поля через поверхность D.
Определение. Если при стремлении к нулю шага разбиения кривой АВ интегральные суммы имеют конечный предел, то этот предел называется криволинейным интегралом по переменной х от функции P(x, y, z) по кривой АВ в направлении от А к В.
Криволинейный интеграл второго рода, т.е. интеграл по координатам отличается от криволинейного интеграла первого рода, т.е. по длине дуги тем, что значение функции при составлении интегральной суммы умножается не на длину частичной дуги, а на ее проекцию на соответствующюю ось. (В рассмотренном выше случае – на ось ОХ).
Вообще говоря, криволинейные интегралы могут считаться также и по переменным у и z.
Сумму криволинейных интегралов также называют криволинейным интегралом второго рода.
Свойства криволинейного интеграла второго рода.
1) Криволинейный интеграл при перемене направления кривой меняет знак.
2)
3)
4)
5) Криволинейный интеграл по замкнутой кривой L не зависит от выбора начальной точки, а зависит только от направления обхода кривой.
Направление обхода контура L задается дополнительно. Если L – замкнутая кривая без точек самопересечения, то направление обхода контура против часовой стрелки называется положительным.
6) Если АВ – кривая, лежащая в плоскости, перпендикулярной оси ОХ, то
Аналогичные соотношения справедливы при интегрировании по переменным у и z.
Теорема. Если кривая АВ – кусочно- гладкая, а функции P(x, y, z), Q(x, y, z) и
R(x, y, z) – непрерывны на кривой АВ, то криволинейные интегралы
существуют.
Вычисление криволинейных интегралов второго рода производится путем преобразования их к определенным интегралам по формулам:
В случае, если АВ – плоская кривая, заданная уравнением y = f(x), то
Геометрические и физические приложения кратных интегралов.
1) Вычисление площадей в декартовых координатах.
y
y = j(x)
S
y = f(x)
a b x
Площадь S, показанная на рисунке может быть вычислена с помощью двойного интеграла по формуле:
2) Вычисление площадей в полярных координатах.
3) Вычисление объемов тел.
Пусть тело ограничено снизу плосткостью ху, а сверху– поверхностью z = f(x,y),
а с боков – цилиндрической поверхностью.
Такое тело называется цилиндроид.
z
z = f(x, y)
x1 y1 x2
x
y2
y
V =
4) Вычисление площади кривой поверхности.
Если поверхность задана уравнением: f(x, y, z) = 0, то площадь ее поверхности находится по формуле:
Если поверхность задана в неявном виде, т.е. уравнением z = j(x, y), то площадь этой поверхности вычисляется по формуле:
5)Вычисление моментов инерции площадей плоских фигур.
Пусть площадь плоской фигуры (область D) ограничена линией, уравнение которой f(x,y) = 0. Тогда моменты инерции этой фигуры находятся по формулам:
- относительно оси Ох:
- относительно оси Оу:
- относительно начала координат: - этот момент инерции называют еще полярным моментом инерции.
6) Вычисление центров тяжести площадей плоских фигур.
Координаты центра тяжести находятся по формулам:
здесь w – поверхностная плотность (dm = wdydx –масса элемента площади).
Формула Остроградского – Грина.
Иногда эту формулу называют формулой Грина, однако, Дж. Грин предложил в 1828 году только частный случай формулы.
Формула Остроградского – Грина устанавливает связь между криволинейным интегралом и двойным интегралом, т.е. дает выражение интеграла по замкнутому контуру через двойной интеграл по области, ограниченной этим контуром.
Будем считать, что рассматриваемая область односвязная, т.е. в ней нет исключенных участков.
y
y = y2(x)
D
A
C
B
y= y1(x)
0 x1 x2 x
Если замкнутый контур имеет вид, показанный на рисунке, то криволинейный интеграл по контуру L можно записать в виде:
Если участки АВ и CD контура принять за произвольные кривые, то, проведя аналогичные преобразования, получим формулу для контура произвольной формы:
Эта формула называется формулой Остроградского – Грина.
Формула Остроградского – Грина справедлива и в случае многосвязной области, т.е. области, внутри которой есть исключенные участки. В этом случае правая часть формулы будет представлять собой сумму интегралов по внешнему контуру области и интегралов по контурам всех исключенных участков, причем каждый из этих контуров интегрируется в таком направлении, чтобы область D все время оставалась по левую сторону линии обхода.
Формула Гаусса – Остроградского.
Формула Гаусса – Остроградского является аналогом формулы Грина – Остроградского. Эта формула связывает поверхностный интеграл второго рода по замкнутой поверхности с тройным интегралом по пространственной области, ограниченной этой поверхностью.
Для вывода формулы Гаусса – Остроградского надо воспользоваться рассуждениями, подобными тем, которые использовались при нахождении формулы Грина – Остроградского.
Рассматривается сначала поверхность, ограниченная сверху и снизу некоторыми поверхностями, заданными известными уравнениями, а сбоку ограниченную цилиндрической поверхностью. Затем рассматривается вариант когда поверхность ограничена цилиндрической поверхностью с образующими, параллельными дум доугим координатным осям.
После этого полученные результаты обобщаются, приводя к формуле Гаусса – Остроградского:
Отметим, что эта формула применима для вычисления поверхностных интегралов по замкнутой поверхности.
На практике формулу Гаусса – Остроградского можно применять для вычисления объема тел, если известна поверхность, ограничивающая это тело.
Тиеют место формулы:
Элементы теории поля.
Определение. Если каждой точке пространства М ставится в соответствие некоторая скалярная величина U, то таким образом задается скалярное полеU(M). Если каждой пространства М ставится в соотвтствие вектор , то задается векторное поле(М).
Пусть в пространстве М задана поверхность D. Будем считать, что в каждой точке Р определяется положительное направление нормали единичным вектором .
В пространстве М зададим векторное поле, постовив в соответствие каждой точке точке пространства вектор, определенный координатами:
Если разбить каким – либо образом поверхность на частичные участки Di и составить сумму , где - скалярное произведение, то предел этой суммы при стремлении к нулю площадей частичных участков разбиения (если этот предел существует) будет поверхностным интегралом.
Если поверхность разбита на конечное число частичных поверхностей, то поток векторного поля через всю поверхность будет равен сумме потоков через частичные поверхности.
Если преобразовать скалярное произведение в координатную форму, то получаем соотношение:
Если на области D существует функция f(x, y, z), имеющая непрерывные частные производные, для которых выполняются свойства:
то такую функцию называют потенциальной функцией или потенциаломвектора .
Тогда вектор является градиентом функции f.
Потенциал может быть найден по формуле:
В этой формуле x0, y0, z0 – координаты некоторой начальной точки. В качестве такой точки удобно брать начало координат.
Теорема. Для того, чтобы поле вектора , заданного в некоторой области, имело потенциал, необходимо и достаточно, чтобы выполнялось одно из двух условий:
1) Интеграл от вектора по любому кусочно – гладкому контуру, принадлежащему области, равен нулю.
2) Интеграл по любому кусочно – гладкому пути, соединяющему две любые точки поля не зависит, от пути интегрирования.
Формула Стокса.
Формула Стокса связывает криволинейные интегралы второго рода с поверхностными интегралами второго рода.
Пусть в пространстве задана некоторая поверхность S. L – непрерывный кусочно – гладкий контур поверхности S.
z S
L
y
D
l
x
Предположим, что функции P,Q и R непрерывны на поверхности S вместе со своими частными производными первого порядка. Применим формулу, выражающую криволинейный интеграл через определенный.
Введем обозначения:
Применив формулу Грина – Остроградского, можно заменить криволинейный интеграл равным ему двойным интегралом. После преобразований устанавливается следуюшее соответствие между криволинейным и поверхностным интегралом:
эта формула и называется формула Стокса.
Определение. Вектор , компоненты которого равны соответственно равны
называется вихремили ротором вектора и обозначается:
Определение. Символический вектор называется оператором Гамильтона.( Уильям Роуан Гамильтон (1805 – 1865) – ирландский математик) Символ Ñ - “набла”.
С учетом этого обозначения можно представить себе понятие ротора вектора как векторного произведения оператора Гамильтона на вектор .
Определение. Криволинейный интеграл, представляющий собой работу векторного поля вдоль некоторой кривой L называется линейным интеграломот вектора по ориентированной кривой L.
Если кривая L представляет собой замкнутый контур, то линейный интеграл по такому контуру называется циркуляцией вектроного поля вдоль контура L.
В векторной форме теорему Стокса можно сформулировать так:
Циркуляция вектора вдоль контура некоторой поверхности равна потоку вихря (ротора) через эту поверхность.
Отметим, что рассмотренная выше формула Грина – Остроградского является частным случаем формулы Стокса.
Также при условии равенства нулю всех компонент ротора вектора, получаем, что криволинейный интеграл по любой пространственной кривой равен нулю, т.е. криволинейный интеграл не зависит от пути интегрирования.
Определение. Выражение называется дивергенцией вектора (дивергенцией векторной функции) и обозначается
Таким образом, формулу Гаусса – Остроградского может быть записана в виде:
или
т.е. интеграл от дивергенции векторного поля по объему равен потоку вектора через поверхность, ограниченную этим объемом.
Определение. Векторное поле называется соленоидальным (трубчатым), если div=0 .
C помощью описанного выше оператора Гамильтона можно представить определенные нами понятия следующим образом:
Как было сказано выше (См. Уравнение Лапласа.), выражение
называется оператором Лапласа.
Справедливы следующие соотношения:
Справедливость этих равенств легко проверить непосредственной подстановкой.
Теперь рассмотрим примеры применения рассмотренных выше понятий.