Размножение клеток
Размножение или пролиферация (от лат. proles — потомство, ferre — нести) клеток — это процесс, который приводит к росту и обновлению клеток. Данный процесс характерен как для одноклеточных, так и многоклеточных организмов.
Клетки-организмы (одноклеточные организмы) размножаются простым делением надвое (бактерии, саркодовые), множественным делением (споровики и др.) или другим путем. Поэтому у бактерий и одноклеточных животных удвоение клеток представляет собой размножение их как самостоятельных организмов, поскольку из исходной формы (организма) образуется две новые клетки, каждая из которых является организмом. Каждая дочерняя клетка (организм) получает полную генетическую информацию, несомую исходной клеткой-организмом.
Соматические клетки многоклеточных организмов размножаются путем сложного деления, которое получило название митоти-ческого деления и которое в общем виде представляет собой механизм, посредством которого одиночные клетки репродуцируют себя. Образовавшиеся в результате деления дочерние клетки подобны исходной (материнской) клетке, отличаясь от последней лишь меньшими размерами. Однако вслед за делением дочерние клетки мгновенно начинают расти и быстро достигают размеров материнской клетки.
Биологический смысл митотического деления состоит в том, что оно является ключевым событием в точной репликации всех хромосом еще до того, как произойдет деление ядра и клетки. В результате митоза дочерние клетки после деления получают хромосомы в точно таком же количестве, какое имела их родительская (материнская) клетка. Следовательно, митотическое деление есть особый способ упорядоченного деления клеток, при котором каждая из двух дочерних клеток получает хромосомы в точно таком же количестве и точно такого же строения, что и хромосомы, которые имела материнская клетка. При каждом митозе образуется копия каждой хромосомы и действует точный механизм их распределения между дочерними клетками.
В митотическом делении клетки различают две стороны — разделение исходного ядра на два дочерних ядра (равное деление хромосом), называемое кариокинезом (от греч. caryon — ядро, kinesis — движение) и представляющее собой, по существу, хромосомный цикл, и следующее затем разделение цитоплазмы с образованием двух дочерних клеток, называемое цитокинезом (от греч. cytos — клетка, kinesis — движение) и представляющее собой цитоплазматический цикл. Каждая из дочерних клеток содержит одно дочернее ядро.
Кариокинез и цитокинез протекают синхронно, причем в кариоки-незе имеет место чередование синтеза ДНК с митозом, тогда как цитокинез чередуется с ростом клеток (удвоением в числе клеточных компонентов).
Существенной особенностью митотического деления является то, что оно в значительной мере сходно у всех организмов. Совокупность процессов, происходящих в клетке от одного деления до другого, получило название митотического цикла.
Митотический цикл состоит из двух стадий — стадии покоя или интерфазы и стадии деления или митоза (от греч. rnitos — нить), обозначаемого символом м. Термины «митоз» и «кариокинез» — синонимы. Интерфаза доступна для оценки качественно и количественно, точно так же доступен для измерения и митоз. В частности, для измерения интенсивности количества митозов используют так называемый митотический индекс, под которым понимают число митозов на 1000 клеток. Данные о митотическом индексе имеют важное практическое значение, особенно в медицинской практике (в оценке интенсивности регенерации органов, действия лекарственных веществ и т. д.).
Интерфаза предшествует митозу, и функциональное содержание ее заключается в том, что в ней происходит синтез ДНК (рис. 58), причем ее длительность составляет не менее 90% в течение всего клеточного цикла. Различают три последовательных периода интерфазы, а именно: пресинтетический, синтетический и постсинтетический.
Пресинтетический период (G1), который часто называют еще первым интервалом (от англ. gap — интервал), является начальным периодом интерфазы. В этот период ДНК еще не синтезируется, однако происходит накопление РНК и белков, в том числе и белков, необходимых для синтеза ДНК. Увеличивается количество митохондрий. Обычно этот период длится 12-24 часа.
Синтетический период (S) следует за G1-периодом и характеризуется тем, что в этот период в клетке происходит синтез (репликация) ДНК, в результате чего количество ее удваивается. В этот период продолжается также синтез РНК и белков. Очень важно, что к концу этого периода каждая из хромосом удваивается и состоит уже из двух сестринских хроматид, удерживаемых центромерои. Можно сказать, что наиболее фундаментальной особенностью S-периода является репликация генов и удвоение набора генов каждой дуплицированной хромосомы. Длительность S-периода обычно составляет около 5 часов.
Постсинтетический период (G2) характеризуется остановкой синтеза ДНК и накоплением энергии. Однако продолжается синтез РНК и белков, формирующий нити веретена деления. Длительность G2-периода составляет 3—6 часов.
Митоз совершается на протяжении четырех последовательных фаз, а именно: профазы, метафазы, анафазы и телофазы (рис. 59.).
В профазе в начале происходит конденсация и спирализация (скручивание) хромосом, в результате чего они становятся видимыми при микроскопии окрашенных препаратов. Увеличивается диаметр каждого завитка. Ядерная мембрана растворяется под действием ферментов, ядрышко исчезает. Центросома делится на две центриоли, после чего последние расходятся к полюсам клетки. Отмечается также фосфорилирование отдельных клеточных белков. Затем между полюсами начинает формироваться ахромати-новая фигура, похожая на веретено. Оно состоит из белка и РНК. К концу этой фазы ахроматиновая фигура вытягивается вдоль клетки, становясь веретеном. Структурно веретено представляет собой двухполюсную структуру, построенную из микротрубочек и различных белков. Хроматиды (сестринские хроматиды) удерживаются вместе центромерои. Длительность профазы составляет примерно 30-60 минут.
В метафазе хромосомы располагаются на экваторе веретена. Они имеют вид толстых образований, плотно свернутых спиралью, что облегчает подсчет и изучение их структуры с помощью микроскопа. Будучи прикрепленными к нитям веретена центромерои, к которой прикрепляются особые белковые комплексы (кине-тофоры), связанные с отдельными микротрубочками хроматиды, пока удерживаются вместе, но плечи их уже разъединены. Длительность метафазы составляет 2—10 минут.
В анафазе наступает разделение кинетохоров, а затем и продольное разделение хромосом, в результате чего каждая сестринская хро-матида имеет собственную центромеру и становится дочерней хромосомой. Хромосомы удлиняются и двигаются к соответствующим полюсам веретена. Анафаза длится 2-3 минуты. Репликация хромосомных концов (теломер), длина которых составляет 2—20 кб., требует теломеразы.
В телофазе (от греч. telos — конец) дочерние хромосомы достигают полюсов, вытягиваются и деспирализуются. Кинетохорные трубочки исчезают. Образуется ядерная оболочка, вновь появляется ядрышко. Длительность составляет 20-30 минут.
На заключительном этапе клеточного деления происходит ци-токинез, который начинается еще в анафазе. Этот процесс заканчивается образованием в экваториальной зоне клетки перетяжки, которая разделяет делящуюся клетку на две дочерние клетки. Перетяжка обеспечивается сокращением кольца, сформированного филаментами актиновой природы.
В отличие от соматических клеток животных в клетках растений из-за ригидности их стенок вместо образования сократительного кольца формируется пластинка между будущими дочерними клетками. На каждой из сторон этой пластинки откладывается целлюлоза, после чего она становится клеточной стенкой.
Каждое клеточное деление является непрерывным процессом, поскольку ядерные и цитоплазматические фазы, вопреки различиям в содержании и по значению, координированы во времени.
Упорядоченность клеточных делений у эукариотов зависит от координации событий в клеточном цикле. У эукариот эта координация осуществляется путем регуляции трех переходных периодов в клеточном цикле, а именно: вступление в митоз, выход из митоза и прохождение через пункт, называемый «Старт», который вводит инициацию синтеза ДНК ( S-фазу) в клетке.
Продолжительность митотических циклов разных клеток различна и составляет от нескольких часов до нескольких дней. Однако она зависит от типа тканей, физиологического состояния, внешних факторов (температура, свет).
Клеточный цикл эукариотических клеток регулируется последовательной активацией циклинзависимых киназ (СДК) путем взаимодействия их с белками-циклинами. Комплекс циклин-СДК оказывается полностью активированным фосфорилированием треонинового остатка в Т-петле СДК, осуществляемым специфической СДК-активирующей киназой (САК). При этом комплекс циклин-СДК вовлекается в инициацию как митоза, так и репликации ДНК. Регуляция митоза зависит от регуляции СДК.
Существуют и другие регуляторы клеточного цикла. В частности известны регуляторы, ингибирующие СДК. Такими ингибиторами являются белки р21, р16 и р27. Они ингибируют функции киназ также путем связывания с ними.
Хромосомная ДНК в клетках организмов-эукариотов реплици-руется лишь один раз в клеточном цикле. Поэтому давно возник вопрос о механизме, ограничивающем лишь один раунд репликации ДНК в клеточном цикле. Предполагают существование так называемого лицензирующего фактора репликации (licensing factor), который позволяет репликацию. В подтверждение этого взгляда установлены лицензирующие белки MSM, которые обычно связаны с хромосомами, но с началом S-фазы освобождаются от этой связи, позволяя репликацию ДНК, а после того, как синтез ДНК завершается, вновь связывается с хромосомами.
Разные ткани характеризуются разной митотической активностью. Поэтому в зависимости от митотической активности различают стабильные, растущие и обновляющиеся ткани. Стабильные ткани — это ткани, в которых клетки не делятся, а количество клеточной ДНК постоянно. Например, клетки центральной и периферической нервной системы не делятся. В этих клетках происходят лишь возрастные изменения. Растущие ткани — это ткани, в которых клетки живут всю жизнь, но среди последних имеются такие, которые делятся посредством митоза. В результате этого наступает увеличение размеров органов. Примером растущих тканей являются ткани почек, желез внутренней секреции, скелетная и сердечная мускулатуры. Обновляющиеся ткани — это ткани, в которых многие клетки подвержены митозам, в результате чего погибающие клетки компенсируются вновь образующимися. Примерами обновляющихся тканей являются клетки желудочно-ки-шечного, дыхательного и мочеполового трактов, эпидермиса, костного мозга, семенников и др. Для митозов характерны суточные колебания, волны.
У высших организмов митотическое деление клеток обеспечивает их рост с последующим увеличением массы тела и дифференциацией клеток. По мере индивидуального развития человека количество его клеток увеличивается, достигая у взрослого человека более чем 10 клеток и оставаясь затем константным.
Как уже отмечено, митохондрии и хлоропласты способны к делению в клетках эукариотов, но контроль их деления не ясен. Установлено лишь, что в геноме клеток растений существует ген, который, возможно, принимает участие в контроле деления хло-ропластов.
Для деления клеток млекопитающих и птиц характерно то, что оно имеет определенные ограничения количества клеточных удвоений. Например, фибробласты плодов человека удваиваются лишь на протяжении 50 генераций, тогда как фибробласты от людей в возрасте 40 и 80 лет подвергаются примерно 40 и 30 удвоениям соответственно, если их культивируют в стандартных условиях. Это явление получило название старения клеток. Считают, что в организме также большинство клеток стареет, например, клетки печени живут около 18 месяцев, эритроциты — 4 месяца, в результате чего в них накапливаются липиды, кальций, пигмент «изнашивания» и они гибнут. Подсчитано, что организм взрослого человека ежедневно теряет около 1-2% своих клеток в результате их гибели. После смерти клетки в ней происходит коагуляция протоплазмы, распад митохондрий и других органелл в результате ауто-лиза (активации внутриклеточных ферментов).
Для объяснения природы старения клеток предложено несколько гипотез, в которых придается значение ошибкам биосинтетических механизмов клеток, механизмам защиты от злокачественного перерождения нормальных клеток или другим причинам. Однако ни одна из известных гипотез не является исчерпывающей в объяснении феномена старения клеток.
Установлено, что для клеток во многих случаях характерен апоптоз, под которым понимают генетическую программу, в результате которой клетки совершают суицид. Можно сказать, что апоптоз — это эволюционно сохраняемый процесс. С помощью этого процесса многоклеточные организмы освобождаются от излишних или потенциально вредных клеток. Этот феномен отличен от старения клеток. На примере нематоды Caenorhabditie elegans было выяснено, что клеточный суицид контролируется генным набором, состоящим из трех генов, контролирующих синтез белка СЕД-3, СЕД-4 и СЕД-9, регулирующих апоптоз. У млекопитающих выявлены белки-2, которые регулируют апоптозную смерть клеток. Полагают, что апоптоз имеет значение в этиологии многих наследственных болезней (болезнь Альцгеймера и Др.), аутоиммунных нарушений, сердечно-сосудистых болезней, возрастных нарушений и даже СПИДа.
Однако погибающие клетки замещаются новыми. Считают, что клеточное содержание организма человека обновляется примерно каждые семь лет. Особенно сильно замещение клеток происходит в крови за счет интенсивного образования кровяных клеток в кроветворных тканях. Применительно к другим видам клеток процесс обновления происходит с очень высокой скоростью. Например, эпителий желудка и кишечника крыс обновляется каждые 72 и 38 часов соответственно, эпителий тонкого кишечника человека — каждые 7-8 дней. Однако нервные клетки функционируют (живут) на протяжении всей жизни организмов.
Наряду с делением клеток путем митоза известен амитоз (от греч. а — не, mytosia — деление ядра), под которым понимают прямое деление ядра клетки. При амитозе сохраняется интерфазное состояние ядра, ядрышко, ядерная мембрана. Ядро клетки делится на две части без формирования веретена, в результате чего образуется двухъядерная клетка. Амитоз встречается иногда в клетках скелетной мускулатуры, кожного эпителия, соединительной ткани. Однако считают, что амитоз является аномальным механизмом в размножении клеток.
Считают, что митотический цикл у высших организмов является результатом эволюции разделительного механизма эукарио-тов. В пользу этого предположения свидетельствуют результаты сравнения разделительных механизмов бактерий, некоторых водорослей, дрожжей, простейших и млекопитающих. Это сравнение показывает, что усложнение митотического аппарата происходит по мере усложнения организации и функций организмов, принадлежащих к разным систематическим группам.