Общая постановка задачи динамического программирования


Задачи динамического программирования

 

Динамическое программирование – метод оптимизации, приспособленный к операциям, в которых процесс принятия решения может быть разбит на этапы (шаги). Такие операции называются многошаговыми.

Начало развития динамического программирования относится к 50-м годам ХХ в. и связано с именем Ричарда Эрнеста Беллмана.

Если модели линейного программирования можно использовать в экономике для принятия крупномасштабных плановых решений в сложных ситуациях, то модели динамического программирования применяются при решении задач значительно меньшего масштаба, например, при разработке правил управления запасами; при распределении инвестиционных ресурсов между альтернативными проектами; при составлении календарных планов текущего и капитального ремонта сложного оборудования и его замены и т.п.

Общая постановка задачи динамического программирования.

Рассматривается управляемый процесс, например, процесс распределения средств между предприятиями, использования ресурсов в течение ряда лет, замены оборудования и т.п. В результате управления система (объект управления) S переводится из начального состояния s0 в состояние sn. Пусть, управление можно разбить на n шагов, т.е. решение принимается последовательно на каждом шаге, а управление, переводящее систему S из начального состояния в конечное, представляет собой совокупность n пошаговых управленческих решений.

Обозначим через Xk управленческое решение на k-м шаге (k=1, 2, …, n). Переменные Xk удовлетворяют некоторым ограничениям и в этом смысле называются допустимыми (Xk может быть числом, точкой в n-мерном пространстве или качественным признаком).

Пусть X=(X1, X2, …, Xn) – управление, переводящее систему S из состояния s0 в состояние sn. Обозначим через sk состояние системы (характеризуемое определенным набором параметров и конкретных их значений) после k-го шага управления. Причем состояние системы sk в конце k-го шага зависит только от предшествующего состояния sk-1 и управленческого решения на k-ом шаге Xk (т.е. не зависит напрямую от предшествующих состояний и управленческих решений). Данное требование называется «отсутствием последствия» и может быть выражено следующими уравнениями состояний:

. (11.1)

Таким образом, получаем последовательность состояний s0, s1, …, sk-1, sk, …, sn-1, sn. Тогда n-шаговый управленческий процесс схематично можно изобразить следующим образом:

 
 


Пусть показатель эффективности k-го шага выражается некоторой функцией:

, (11.2)

а эффективность всего рассматриваемого многошагового процесса следующей аддитивной функцией:

, (11.3)

или

. (11.4)

Тогда задача пошаговой оптимизации (задача динамического программирования) формулируется следующим образом: определить такое допустимое управление Х, переводящее систему S из состояния s0 в состояние sn, при котором целевая функция Z принимает наибольшее (наименьшее) значение.

Задача динамического программирования обладает следующими особенностями:

1. Задача оптимизации интерпретируется как n-шаговый процесс управления.

2. Целевая функция равна сумме целевых функций каждого шага.

3. Выбор управления на k-ом шаге зависит только от состояния системы к этому шагу, не влияет на предшествующие шаги (отсутствие обратной связи).

4. Состояние sk после k-го шага управления зависит только от предшествующего состояния sk-1 и управления Xk («отсутствие последствия»).

5. На каждом шаге управление Xk зависит от конечного числа управляющих переменных, а состояние sk – от конечного числа параметров.