Сферическая система координат.
z
P
r
j
0 q x
y
Связь координат произвольной точки Р пространства в сферической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:
Для представления тройного интеграла в сферических координатах вычисляем Якобиан:
Окончательно получаем:
Геометрические и физические приложения кратных интегралов.
1) Вычисление площадей в декартовых координатах.
y
y = j(x)
S
y = f(x)
a b x
Площадь S, показанная на рисунке может быть вычислена с помощью двойного интеграла по формуле:
Пример. Вычислить площадь фигуры, ограниченной линиями y2 = 4x + 4;
x + y – 2 = 0.
Построим графики заданных функций:
Линии пересекаются в двух точках – (0, 2) и (8, -6). Таким образом, область интегрирования ограничена по оси Ох графиками кривых от до х = 2 – у, а по оси Оу – от –6 до 2. Тогда искомая площадь равна:
S =
2) Вычисление площадей в полярных координатах.
3) Вычисление объемов тел.
Пусть тело ограничено снизу плосткостью ху, а сверху– поверхностью z = f(x,y),
а с боков – цилиндрической поверхностью.
Такое тело называется цилиндроид.
z
z = f(x, y)
x1 y1 x2
x
y2
y
V =
Пример. Вычислить объем, ограниченный поверхностями: x2 + y2 = 1;
x + y + z =3 и плоскостью ХОY.
Пределы интегрирования: по оси ОХ:
по оси ОY: x1 = -1; x2 = 1;
4) Вычисление площади кривой поверхности.
Если поверхность задана уравнением: f(x, y, z) = 0, то площадь ее поверхности находится по формуле:
Если поверхность задана в неявном виде, т.е. уравнением z = j(x, y), то площадь этой поверхности вычисляется по формуле:
5)Вычисление моментов инерции площадей плоских фигур.
Пусть площадь плоской фигуры (область D) ограничена линией, уравнение которой f(x,y) = 0. Тогда моменты инерции этой фигуры находятся по формулам:
- относительно оси Ох:
- относительно оси Оу:
- относительно начала координат: - этот момент инерции называют еще полярным моментом инерции.
6) Вычисление центров тяжести площадей плоских фигур.
Координаты центра тяжести находятся по формулам:
здесь w – поверхностная плотность (dm = wdydx –масса элемента площади).
7) Вычисление объемов тел с помощью тройного интеграла.
Если поверхность тела описывается уравнением f(x, y, z) = 0, то объем тела может быть найден по формуле:
при этом z1 и z2 – функции от х и у или постоянные, у1 и у2 – функции от х или постоянные, х1 и х2 – постоянные.
8) Координаты центра тяжести тела.
9) Моменты инерции тела относительно осей координат.
10) Моменты инерции тела относительно координатных плоскостей.
11) Момент инерции тела относительно начала координат.
В приведенных выше формулах п.п. 8 – 11 r – область вычисления интеграла по объему, w – плотность тела в точке (х, у, z), dv – элемент объема
- в декартовых координатах: dv = dxdydz;
- в циллиндрических координатах: dv = rdzdjdq;
- в сферических координатах: dv = r2sinjdrdjdq.
12) Вычисление массы неоднородного тела.
Теперь плотность w – величина переменная.