Критерий Коши.


(необходимые и достаточные условия сходимости ряда)

 

Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

1.3 Определение. Ряд называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

 

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство

выполнялось бы для всех х на отрезке [a,b].

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :

т.е. имеет место неравенство:

.

 

Еще говорят, что в этом случае функциональный ряд мажорируется числовым рядом .

Б2

2.2

ряд называется положительным, если Un≥0, для всех n € N