Поперечнополосатая мышечная ткань
Скелетная мышечная ткань образует скелетные мышцы двигательного аппарата. Структурным компонентом этой ткани являются миосимпласты и миосателлитоциты, вместе образующие мышечные волокна. Они развиваются из клеток миотомов сомитов мезодермы. Мышечное волокно имеет форму цилиндра, толщиной 20-100 мкм, а длина равна длине мышцы и может быть более 10 см. Оболочку волокна называют сарколеммой (от греч. «sarcos» - мясо). Она двухслойна: внешний слой образован базальной мембраной, ретикулярными и тонкими коллагеновыми волокнами и входит в состав опорного аппарата, а внутренний слой является плазмолеммой симпласта и участвует в проведении нервных импульсов. Между базальной мембраной и плазмолеммой располагаются миосателлитоциты - небольшие, малодифференцированные клетки с одним ядром. Под плазмолеммой симпласта локализуются ядра, количество которых может достигать несколько десятков тысяч.
Цитоплазма симпласта - саркоплазма - содержит органеллы и включения. 70% объёма мышечного волокна занимают органеллы специального значения - миофибриллы. Это нити, расположенные вдоль волокна. Длина их совпадает с длиной волокна, диаметр 1,5 мкм. Миофибриллы состоят из темных и светлых участков - дисков. Так как темные и светлые диски всех миофибрилл одного волокна располагаются на одном уровне, образуется поперечная исчерченность и поэтому мышечное волокно называется поперечноисчерченным. Это результат оптического эффекта: темные диски в поляризованном свете имеют двойное лучепреломление и называются Анизотропными, или А-дисками; светлые диски не имеют двойного лучепреломления и называются Изотропными, или I-дисками. Разное светопреломление дисков обусловлено различным строением. Светлые (I) диски однородны по составу, образованы только параллельно лежащими тонкими нитями, актиновыми миофиламентами (6-5 нм), состоящими преимущественно из белка актина. Темные (А) диски неоднородны: образованы как толстыми миозиновыми миофиламентами (d=10-12 нм), расположенными в центре и состоящими из белка миозина, так и частично проникающими между ними тонкими актиновыми миофиламентами. В середине I-диска проходит тонкая темная линия, которая называется Z-линией, или телофрагмой. К ней прикрепляется один конец актиновых нитей. Участок миофибриллы между двумя телофрагмами называется саркомер. Саркомер считают функционально-структурной единицей миофибриллы. Длина саркомера 2,3 мкм. В центре темного А-диска можно выделить светлую полосу, или зону Н, содержащую только толстые нити. В середине её выделяется тонкая темная линия М, или мезофрагма. Таким образом, каждый саркомер содержит один А-диск и две половины I-диска.
Каждая миофибрилла окружена повторяющимися по ее длине элементами саркоплазматической сети. Они представлены продольно расположенными L-трубочками, которые в центральной части образуют многочисленные анастомозы в виде сети, а на концах - терминальные цистерны (плоские резервуары), служащие для депонирования ионов кальция. Терминальные цистерны заканчиваются на границе А- и 1-дисков. Между двумя соседними терминальными цистернами находится Т-трубочка. Т-трубочки образованы впячиванием плазмолеммы мышечного волокна поперечно миофибриллам. Одна Т-трубочка, контактируя с двумя соседними терминальными цистернами, образует так называемую триаду.
Механизм мышечного сокращения. Возбуждение терминалей аксона мотонейрона через нейромышечный синапс вызывает локальную деполяризацию плазмолеммы мышечного волокна, которая является постсинаптической мембраной. Это приводит к генерации потенциала действия, распространяющегося от плазмолеммы по Т-трубочкам до триад, и достигает цистерн саркоплазматической сети, расположенных вокруг миофибрилл. Открываются Са2+-каналы, выходят ионы кальция из саркоплазматической сети. Ионы кальция связываются с тропонином тонких нитей. При этом вызываются «информационные изменения тропомиозина. активные центры на актиновых филаментах «открываются». В результате головки миозина связываются с центрами актина, изменяют свою конформацию, воздавая тянущее усилие, и актиновые нити начинают скользить между миозиновыми. Эти циклы очень быстро повторяются до 300 раз и тонкие нити сдвигаются к центру саркомера. Они тянут за собой Z-линии, которые прошивают все миофибриллы и прикрепляются к сарколемме. Поскольку одномоментно в процесс сокращения вовлекаются все саркомеры мышечного волокна, оно укорачивается.
При отсутствии нервного импульса кальций откачивается назад в цистерны саркоплазматической сети, активные центры «закрываются», происходит расслабление саркомеров и мышечных волокон. Энергетические потребности при сокращении обеспечиваются за счет гидролиза АТФ митохондрий и анаэробного гликолиза гликогена, который присутствует в мышечных волокнах в виде включений. Для синтеза АТФ при длительной работе мышцы необходим запас кислорода, который связывается белком-пигментом миоглобином.
По скорости сокращения, его характеру и типу окислительного обмена различают два основных типа мышечных волокон. Красные мышечные волокна - волокна небольшого диаметра, окружены массой капилляров, в саркоплазме содержат много миоглобина, а в митохондриях - высокий уровень активности окислительных ферментов. Миофибрилл меньше, чем саркоплазмы. Они работают медленно, но долго не утомляются. Белые мышечные волокна имеют больший диаметр, много миофибрилл и гликогена, но меньше митохондрий, а, следовательно, низкую окислительную гликолитическую активность. При этом образуется значительно меньше молекул АТФ и молочной кислоты в отличие от красных волокон, где молочная кислота служит субстратом для дальнейшего окисления. Белые мышечные волокна быстро и сильно сокращаются, но быстро утомляются. Промежуточный тип волокон занимает среднее положение между первыми двумя.
Мышца как орган состоит из множества мышечных волокон. Тип мышцы соответствует преобладающему типу мышечных волокон. Отдельное мышечное волокно окружено тонкой прослойкой рыхлой волокнистой соединительной ткани, называемой эндомизием. Несколько волокон образуют пучки, окруженные более толстой прослойкой рыхлой соединительной ткани - перимизием. В эндо- и перимизии находятся сосуды и нервы, обеспечивающие питание и регуляцию мышцы. Снаружи она окружена эпимизием (фасцией), образованной плотной соединительной тканью. Концы мышцы переходят в сухожилие.
Иннервируются мышцы эфферентными и афферентными волокнами соматической нервной системы. Так как скелетные мышечные волокна не анастомозируют, каждое мышечное волокно иннервируется самостоятельно.
Скелетная мышечная ткань характеризуется хорошей способностью к физиологической регенерации, что проявляется функциональной гипертрофией мышц. После повреждения мышечное волокно восстанавливается за счет митотически делящихся миосателлитоцитов.
Сердечная мышечная ткань так же, как скелетная, является поперечнополосатой, так как содержит миофибриллы: с поперечной исчерченностью. Однако она состоит из клеток - кардиомиоцитов, связанных между собой вставочными дисками с десмосомами. Они образуют анастомозирующие между собой функциональные волокна. Кардиомиоциты содержат меньше миофибрилл, но больше митохондрий, поэтому сокращаются с меньшей силой, но долго не утомляются.
К клеточной дегенерации кардиомиоциты не способны, поэтому после гибели (например, при инфаркте миокарда) сердечная мышечная ткань не восстанавливается, а замещается плотной соединительной (образуется рубец).
Иннервируются вегетативной нервной системой. В сердце имеются интрамуральные вегетативные ганглии и сплетения, которые регулируют работу проводящей системы сердцам состоящей из атипичных кардиомиоцитов.