Материалы электронной техники.


Проводящие материалы (проводники)

В настоящее время не существует общепринятой классификации проводниковых материалов. В физике, химии и технике проводящие материалы (как и все другие) классифицируются по различным признаками.

Приведём одну из возможных классификаций по нескольким признакам: состав, функции, проводимость.

Далее эти группы можно разбить на более мелкие, используя другие признаки классификации.

Механизм прохождения тока по металлам обусловлен движением свободных электронов, следовательно, проводники являются материалами с электронной проводимостью (первого рода). Проводниками второго рода называются электролиты, представляющие собой растворы кислот и щелочей.

Электропроводность металлов обусловлена наличием большого числа свободных электронов. Согласно классической теории Друде-Лоренца, электроны в металлах обобществлены в некий единый электронный газ. Данная теория хорошо действует в диапазоне эксплуатационных температур, однако, при температурах, близких к 0 К и в зонах плавления, она не работает: описывая поведение электронов газовыми законами, теория утверждает, что все электроны должны лишиться своей энергии, а металлы при этом перестанут проводить электрический ток, что не верно. Поэтому в настоящее время электропроводность металлов принято описывать по законам квантовой статистики Ферми-Дирака, которая утверждает:

,

где е – заряд электрона;

n - концентрация электронов;

- длина свободного пробега;

h – постоянная Планка.

С точки зрения зонной теории твёрдого тела металлы представляют собой вещества, у которых валентная зона смыкается с зоной проводимости (может быть, перекрывается), то есть запрещенная зона отсутствует, что обуславливает лёгкость возникновения свободных носителей заряда.

В зонной диаграмме металла присутствует уровень Ферми, для металлов он определяется как верхний заполненный энергетический уровень при абсолютном нуле по кельвину (то есть электроны теряют свою энергию, но они не падают на нулевой энергетический уровень, а занимают низшие энергетические уровни). Электроны как наиболее подвижные элементарные частицы в материале являются главными носителями энергии, причём не только электрической но и тепловой. Следовательно, чем больше электронов и чем выше электропроводность материала, тем выше теплопроводность, что подтверждается законом Лоренца:

,

где - удельная теплопроводность,

- число Лоренца (является постоянной для материала).

Температурная зависимость электропроводности металла.

 

 

Рисунок 18

 

I зона. Пунктиром обозначена кривая для идеального металла. На практике:

1. Металл приобретает постоянную и весьма малую величину удельного сопротивления

2. Металл переходит в состояние сверхпроводимости при ТСВ.

II зона. Нелинейность характеристики выражается уравнением

~, n=1…5

III зона – линейный участок, зона эксплуатационных температур.

IV зона располагается вблизи температуры плавления ТПЛ. Большая часть металлов резко скачком увеличивает своё удельное сопротивление. Однако некоторые (висмут Vi, галлий Ga) – уменьшают. Это связано с особенностями кристаллической решётки.

V зона для большинства металлов характерна увеличением удельного сопротивления.

, где - удельное сопротивление при нормальных условиях (Т=0°С, р=765 мм рт. ст.)