Основные определения.


Общие методы описания случайных процессов.

Случайные процессы.

 

Случайным процессом называют функцию неслучайного аргумента t (время), которая при каждом фиксированном значении аргумента является случайной величиной. Сечением случайного процесса называют случайную величину, соответствующую фиксированному значению случайного аргумента . При этом случайный процесс можно рассматривать как совокупность случайных величин .

Реализацией случайного процесса называют неслучайную функцию аргумента , равной которой может оказаться случайный процесс в результате испытания. Если на опыте наблюдается случайный процесс, то в действительности, наблюдается одна из его реализаций.

Аналогично обозначениям, принятым для случайных величин, случайный процесс обозначается как , а его реализации как , при этом множество реализаций называется ансамблем реализаций случайного процесса.

Пусть - случайный процесс с заданным ансамблем реализаций, а - некоторый момент времени. Рассмотрим случайную величину в сечении и введем плотность распределения этой случайной величины . Однако, информация, которую можно извлечь из одномерной плотности, недостаточна, чтобы судить о протекании случайного процесса.

Получить более полное описание случайного процесса можно в случае, если рассмотреть сечения случайного процесса в несовпадающие моменты времени; и рассмотреть двумерную плотность распределения вероятностей .

Естественным обобщением является -мерное сечение случайного процесса (), приводящее к -мерной плотности распределения вероятностей, .

Считается, что случайный процесс задан, если для любого и для любого набора сечений известна -мерная плотность распределения вероятностей . Однако получение и анализ таких плотностей распределения в большинстве случаев представляет значительные математические трудности.