Влияние технологии производства интегральных схем на архитектуру и характеристики вычислительных машин и систем


 

Структура ВМ и ВС и организация вычислительного процесса существенно зависят от функциональной организации и распределения функций между блоками. А это, в свою очередь, в значительной мере определяется функциональной емкостью СБИС.

 

Из теории и практики современных СБИС известно, что основную площадь на кристалле занимают не сами логические элементы, а связи между ними. Быстродействие схем также в основном ограничивается задержками в связях. Развитие технологии СБИС позволяет все большее число элементов и связей перенести на уровень кристалла, обеспечивая снижение стоимости, повышение быстродействия и надежности.

По мере увеличения уровня интеграции и функциональных возможностей СБИС в развитии архитектуры прослеживаются следующие тенденции:

· Перенос функций часто работающего системного ПО на аппаратные средства;

· широкое использование методов параллельной обработки на всех уровнях организации вычислительного процесса;

· расширение сферы использования специализированных и функционально ориентированных процессоров;

· снижение относительных затрат времени на коммутацию в сравнении с обработкой.

Наиболее сильное влияние на ВС оказывают технологии производства трех типов средств: МП, СБИС динамической памяти (DRAM) и внешних запоминающих устройств на магнитных дисках

Развитие микропроцессоров непосредственно связано с успехами технологии производства ИС. Число вентилей на кристалле увеличивается ежегодно на 60-80%. Это связано с совершенствованием технологии изготовления ИС и развитием технологии выращивания кристаллов полупроводников.

Скорость переключения вентилей возрастает примерно в том же темпе, что и плотность их размещения. Но из-за задержек в связях и увеличения связей по мере роста степени интеграции СБИС длительность такта (регистровой передачи) снижается медленнее.

Все современные ИС выполняются по планарной технологии. При этом полупроводниковая структура формируется на поверхности кристалла в нескольких слоях (15-20). Отдельные слои используются для формирования топологических элементов полупроводниковой структуры: диффузионного, из поликремния, металла, диэлектрика. Форма и размеры топологических элементов определяются с использованием маски (при фотолитографии) либо с помощью управляемого электронного луча (при электронной литографии). При любом способе формирования полупроводниковой структуры неизбежны технологические отклонения, допуск которых зависит от точности технологического оборудования. Основной тенденцией является уменьшение линейного размера, в пределах которого можно сформировать элемент. В качестве меры используют параметр µ, кратно которому определяется ширина металлического, поликремниевого соединения, линейные размеры диффузионного участка и др. Этот параметр µ называется проектной нормой. Он равен значению максимального случайного смещения границы топологического элемента. Чем меньше µ, тем выше уровень интеграции ИС.

Другой тип массовых СБИС с полным циклом проектирования, развитие которых существенно влияет на архитектуру ВС — это СБИС динамической памяти — DRAM. Основным блоком структуры DRAM является матрица запоминающих элементов (ЗЭ). Адрес ячейки вводится параллельно-последовательно (сначала младшая половина адреса, затем через те же выводы — старшая). При такой организации увеличение на единицу числа адресных входов приводит к увеличению числа ЗЭ в матрице в четыре раза. Поэтому увеличение информационной емкости СБИС DRAM происходит дискретно.

Рост быстродействия происходит существенно медленнее из-за увеличения длины связей ЗЭ с внешним выводом СБИС по мере роста информационной емкости матрицы ЗЭ. Рост быстродействия характеризуется следующим показателем: время доступа уменьшается на 30% за 10 лет.

Прогресс в области внешней памяти на магнитных дисках характеризуется следующими данными. Плотность размещения информации на носителе и информационный объем увеличиваются в среднем в 4 раза за 3 года. Время доступа уменьшается в 1 — 3 раза за 10 лет.

Приведенные характеристики темпов развития основных устройств определяют средний срок морального старения процессора — 5 лет.