Теория ожидаемой полезности


Во всех рассуждениях данного раздела предполагается, что бинарное отношение предпочтения определено на Р - множестве всех простых распределений вероятностей р, q, ... , заданных на непустом множестве Х. Элементами Х могут быть чистые стратегии или альтернативы, либо же они могут представлять собой исходы, или последствия, некоторых решений, принимаемых в ситуациях, содержащих элемент риска; вероятности таких исходов описываются некоторым распределением из Р.

Простым распределением вероятностей р называется вещественная функция Р, которая принимает положительные значения на большинстве элементов х из конечного множества Х, а сумма всех значений р(х) равна единице. В зависимости от контекста распределения из Р часто называют ставками, играми, лотереями, альтернативами риска, смешанными стратегиями и рандомизированными стратегиями. Для любых распределений р и q из Р выражение р+(1-)q называется прямой линейной комбинацией распределений p и q; здесь - действительное число, заключенное между 0 и 1. Таким образом, если r=р+(1-)q, то

r(х)=р(х)+(1-)q(х) (1.3)

для любого х из Х. Если р и q принадлежат Р и 0, то р+(1-)q также принадлежит Р.

Предположим, что при =0,5 элементами Х являются некоторые суммы денег и пусть распределение P имеет вид:

р(0 долл.)=0,3;

р(10 долл.)=0,2;

р(20 долл.)=0,5,

а распределение q -

q(7 долл.)=0,7;

q(10 долл.)=0,3.

Тогда

r(x)=р(x)+(1-)q(x)=p(x)+q(x);

r(0 долл.)= 0+0,3=0,15;

r(7 долл.)= 0+0,7=0,35;

r (10 долл.)= 0,2+0,3=0,1+0,15=0,25;

r(20 долл.)= 0,5+0=0,25.

Проведем проверку:

0,15+0,35+0,25+0,25=1,0.

Таким образом, прямая линейная комбинация (1.3) простых распределений вероятностей P и Q привела к простому распределению вероятностей R.