Фундаментальные свойства энтропии
При равновероятности знаков алфавита Pi = 1/N из формулы Шеннона получают:
Из этого следует, что при равновероятности символов алфавита энтропия определяется исключительно числом символов алфавита и по существу является характеристикой только числа символов алфавита.
Если же знаки алфавита неравновероятны, то алфавит можно рассматривать как дискретную случайную величину, заданную статистическим распределением частот появления знаков Xi(или вероятностей Pi =ni / n) табл. 1:
Таблица 1.
Символы Xi | X1 | X2 | … | Xm |
Вероятности Pi | P1 | P2 | … | Pm |
Такие распределения получают обычно на основе статистического анализа конкретных типов сообщений (например, русских или английских текстов и т.п.).
Поэтому, если знаки алфавита неравновероятны и хотя формально в выражение для энтропии входят вероятности появления его знаков, энтропия отражает статистические свойства некоторой совокупности сообщений.
Еще раз вернемся к понятию энтропии источника сообщений.
В выражении для энтропии
величина log 1/Pi представляет частную энтропию, характеризующую информативность знака хi, а энтропия Н - есть среднее значение частных энтропий. Таким образом еще раз подчеркнем, что энтропия H источника выражает СРЕДНЮЮ энтропию на один символ алфавита.
Функция (Pi • log Pi) отражает вклад знака Xi в энтропию Н. При вероятности появления знака Pi=1 эта функция равна нулю, затем возрастает до своего максимума, а при дальнейшем уменьшении Pi стремится к нулю