Общие сведения о реологии и нелинейности деформирования грунтов


 

Как уже отмечалось выше, грунтам оснований свойственны реологические процессы, проявляющие себя через ползучесть скелета грунта и консолидацию. Ползучесть скелета грунтов объясняется перегруппировкой структурных агрегатов и грунтовых частиц, выражающейся в постепенном разрушении сначала менее прочных, а затем более прочных структурных связей, возникновением новых связей коллоидной и молекулярно-контактной природы, проявляющихся вследствие сближения частиц грунта в процессе деформирования в зонах с большими напряжениями; консолидация сопровождается вытеснением воды и воздуха из пор в менее напряженные области или на поверхность грунтового массива.

Рассматривая деформирование образцов грунта при сдвиге под действием внешней нагрузки различной интенсивности в течение определенного промежутка времени, можно, построив соответствующие графики, получить семейство кривых ползучести (рис. 2.25).

Анализируя эти графики, можно выделить два типа деформаций: мгновенные γsr и развивающиеся во време­ни, или деформации ползучести γel.

 

О

 

Рис. 2.25. Деформации грунта во

времени при различных стадиях

ползучести

 

Характер деформаций ползучести зависит от внешней нагрузки. При нагрузке, не превышающей предела длительной прочности, происходит постепенное уменьшение интенсивности нарастания деформаций ползучести и этот этап деформирования называют стадией затухающей ползучести (кривая 1 на рис. 2.25). На этой стадии процесс разрушения ранее существовавших структурных связей компенсируется образованием еще большего числа новых связей, вследствие чего и происходит затухание деформаций.

При нагружении образца внешней нагрузкой, вызывающей появление напряжений, незначительно превышающих предел длительной прочности, процесс деформирования протекает иначе, а именно: деформации ползучести растут во времени с постоянной скоростью и этот этап деформирования называют стадией установившейся ползучести (кривая 2). На этой стадии деформирования устанав­ливается равновесие между количеством разрушающихся связей, сопровождающееся потерей прочности и образованием новых связей. Это и вызывает постоянный рост деформаций ползучести.

Если внешняя нагрузка вызывает появление напряжений, суще­ственно превышающих предел длительной прочности, то процесс деформирования переходит в стадию прогрессирующего течения, при которой наблюдается увеличение скорости роста деформаций ползучести (кривая 3). Эта стадия сопровождается интенсивным разрушением существовавших связей, а образующееся количество новых водно-коллоидных и молекулярно-контактных связей незначительно, вследствие чего эта стадия ползучести всегда заканчивается разрушением.

В целях исключения появления значительных незатухающих осадок и разрушения оснований в грунтах допускается только первая стадия деформирования — стадия затухающей ползучести. Для математического описания закона деформирования скелета грунта в стадии затухающей ползучести используют теорию наследствен­ной ползучести. Зависимость между деформациями и напряжени­ями при непрерывном одноосном уплотнении переменным давлени­ем принимают в виде

где σ(t) и σ(t0) — напряжения, развивающиеся к моменту времени t и t0; t — текущая координата времени; t0 — время, соответсвующее моменту приложения нагрузки, вызывающей напряжение σ(t0), действующее в течение отрезка времени dt0; К(t,t0) — ядро ползучести, параметры которого определяют из опытных данных.

Использование зависимости (2.40) в расчетах оснований позво­ляет учитывать режимы загружения, т. е. изменение внешней нагрузки в процессе эксплуатации зданий, а также предысторию загружения или влияние предшествующих загружений.

Однако применение выражения (2.40) имеет существенное ограничение, так как положенная в его основу линейная зависимость между деформациями и напряжениями позволяет рассчитывать основания, работающие только в пределах первых двух фаз напряженного состояния.

Возможность построения расчетных методов для грунтов оснований, деформирующихся в пределах третьей и четвертой фаз напряженного состояния, даст нелинейная теория упругости.

При нелинейном деформировании в условиях объемного напряженного состояния при простом загружении устанавливается нелинейная зависимость между интенсивностью напряжений

 

 

и интенсивностью относительных деформаций

 

 

в следующем виде (рис. 2.26):

 

σi=E'εi, (2.41)

 

где E' = tgα — секущий модуль упругости (рис. 2.26).

Рис.2.26.Зависимость между интенсивностями напряжений и деформаций при объёмном напряжённом состоянии.

 

Секущий модуль упругости, как это следует из зависимости, показанной на рис. 2.26, является величиной переменной и зависит от интенсивности относительных деформаций εi, E=ƒ(εi). Тогда выражение (2.41) можно записать в виде

 

σi=ƒ(εii, (2.42)

 

Применение зависимости (2.42) к расчетам оснований позволяет учитывать нелинейность деформирования, т.е. рассчитывать их в условиях деформирования в пределах третьей и четвертой фаз.

Решения нелинейной теории упругости позволяют более рационально проектировать фундаменты тяжелых сооружений, испытывающих большие нагрузки (дамбы, плотины и др.), и фундаменты обычных зда­ний, расположенных на малосжимаемых грунтах (плотные пески, глины, суглинки в твердом и полутвердом состоянии). Нелинейную теорию упругости применяют для расчета оснований, которые способны при больших нагрузках испытывать незначительные деформации, одна­ко она не позволяет учитывать режим нагружения и предысторию Деформирования.

Необходимо отметить, что использование теории ползучести и нелинейной теории упругости при проектировании оснований Фундаментов приводит к очень сложным математическим зависимостям: в первом случае — к линейным интегродифференциальным уравнениям, во втором — к нелинейным дифференциальным уравнениям, аналитическое решение которых в общем случае невозможно. Однако применение численных методов (конечных, разностей и конечного элемента) с использованием ЭВМ позволит получать инженерно приемлемые результаты.

Линейной теории ползучести и линейной теории упругости присущи ограничения и недостатки, о которых упоминалось выше, поэтому в последнее время делаются попытки создания общей теории деформирования оснований на основе теории нелинейно деформируемого упругоползучего тела, представляющей собой синтез двух упомянутых теорий. Математическая зависимость между напряжением и деформациями имеет вид

ε(t)=σ(t)·S(σ)/E(t) - t0tσ(τ)S(σ)·дС/дτ·dτ

 

где Sm(σ) и Sr(σ) — соответственно функции нелинейности упругомгновенных деформаций и деформаций ползучести.

Использование уравнения (2.43) для практических расчетов приведет к нелинейным интегродифференциальным уравнениям, решение которых возможно только с помощью современных ЭВМ.