Модель Дебая


Досвід показує, що теплоємність дійсно падає зі зменшенням температури, але не експоненціально, а пропорційно T 3. Справа в тому, що при будь-яких, як завгодно низьких температурах в кристалі знайдуться коливання, енергія фонона яких менше k B T. Це - довгохвильові акустичні коливання.Саме такі коливання, точніше ті з них, частота яких менше k B T / ħ, вносять основний внесок в енергію при низьких температурах. Коливання з великими частотами (оптичні і більше короткохвильові акустичні)''заморожені'': фононів цих коливань експоненціально мало.
Зробимо просту оцінку. Внесок в енергію вносять фонони, енергія яких менше kT. Нехай швидкість звуку j-й акустичної гілки дорівнює j і не залежить від напрямку хвильового вектора: ω = j | k |. Тоді внесок в енергію дають коливання з хвильовими векторами, меншими k max = k B T / (ħ j). Щільність дозволених значень хвильових векторів в k-просторі кристала дорівнює V / (2 π) 3, тому всередині сфери радіуса k max міститься дозволених значень хвильових векторів. Це число коливань одній акустичній гілки, що вносять істотний внесок в енергію. На кожне таке коливання доводиться енергія порядку kT. Для енергії коливань одній акустичній гілки отримуємо:
(50).
Так як ми обчислюємо енергію і теплоємність одиниці об'єму кристала, то в (50) ми поклали V = 1.
Таким чином, внесок одній акустичній гілки в теплоємність пропорційний T 3:
(51).
Щоб отримати повну енергію і теплоємність, треба скласти внески від трьох акустичних гілок:
(52),
де через j позначена швидкості звуку j-й акустичної гілки.
Ми зробили досить грубу оцінку, тому до чисельним коефіцієнтам в останніх двох виразах не варто ставитися серйозно. Тим не менш, ця оцінка дає правильну залежність енергії і теплоємності від температури і швидкості звуку.

Порахуємо тепер енергію гратки при низьких температурах більш акуратно.
Формула (44) має вигляд суми по різним коливань (різним станам фононів) певної величини, яка залежить тільки від енергії фонона:

Такі суми зустрічаються досить часто. Так як f залежить тільки від енергії фонона, то від суми за станів можна перейти до інтегралу по енергії:
(54).
Тут - Густина станів фононів. Нагадаємо, що - Це число станів квазічастинок (фононів) в одиниці об'єму з енергіями від до , Тобто число різних коливань з такими енергіями.
Сумарна густина станів складається з густини станів різних гілок: ; Щільність станів гілки визначається її законом дисперсії . Аналітично отримати закони дисперсії і щільності станів фононів реальних кристалів практично неможливо.
Однак при низьких температурах енергія і теплоємність визначаються довгохвильовими акустичними фононами. Щільність станів акустичних фононів нам відома, ми отримали її в якості прикладу, коли вводили саме поняття щільності станів . Якщо для j-й акустичної гілки ω = j | k |, то:
(55).
Щільність станів довгохвильових коливань всіх акустичних гілок виходить підсумовуванням за трьома акустичним гілкам:
(56), де -''Усереднена''швидкість звуку:
(57).
Лінійний закон дисперсії ω = | K | і відповідна щільність станів правильні лише для малих k. При великих значеннях хвильового вектора закон дисперсії і щільність станів мають більш складний вид.
Однак при низьких температурах внесок в енергію і теплоємність вносять як раз тільки довгохвильові фонони, а при високих температурах вид щільності станів не важливий, тому що в цьому випадку на кожне коливання доводиться енергія kT. Щоб отримати вираз, яке давало б правильні граничні залежності при низьких і високих температурах, Дебай запропонував вважати, що закон дисперсії ω = | K | виконується і при великих k.Максимальне значення хвильового вектора k D при цьому вибирається так, щоб в кулі радіуса k D містилося стільки дозволених значень хвильових векторів, скільки їх міститься в зоні Брілюена, N = 1 / v 0. Іншими словами, обсяг цього кулі повинен бути дорівнює обсягу зони Брілюена (2 π) 3 / v 0,звідки
(58).
Таким чином, зберігаючи число акустичних коливань, ми замінюємо першу зону Брілюена сферою, а реальний закон дисперсії - лінійним. Фонон з хвильовим вектором k D має енергію . Відповідна температура:
(59), називається температурою Дебая.
У такому наближенні ми можемо обчислити внесок акустичних гілок в енергію і теплоємність решітки:

При низьких температурах, T <<θ, верхня межа інтеграла багато більше одиниці. Завдяки експоненті в знаменнику інтеграл сходиться дуже швидко, що дозволяє покласти верхню межу рівним нескінченності. Значення такого інтеграла відомо: (61).
Для енергії акустичних коливань при низьких температурах отримуємо:
(62)
Звідки випливає, що теплоємність решітки при низьких температурах пропорційна T 3:
(63).
При високих температурах, T>> θ, верхня межа інтегрування малий, тому можна вважати, що exp (x) -1 ≈ x, таким чином:
(64).
Тоді: E = 3 NkT і C V = 3 Nk.
Це закон Дюлонга і Пті, тільки замість повного числа коливань 3 lN стоїть число коливань акустичних гілок 3 N. (При високих температурах на кожне коливання доводиться середня енергія kT, повне число акустичних коливань дорівнює 3 N, тому внесок акустичних гілок в енергію дорівнює 3 NkT).
У межі низьких і високих температур модель Дебая дає точні значення для вкладу акустичних гілок в енергію і теплоємність. В області ж проміжних температур, T ~ θ, ця модель лише апроксимує реальну залежність енергії і теплоємності від температури.
Температура Дебая розділяє дві температурні області. В області низьких температур на енергію і теплоємність решітки сильний вплив надають квантові ефекти (''вимерзання''високочастотних коливань). В області високих температур ці ефекти не істотні, і теплоємність може бути обчислена в класичному наближенні. Для більшості кристалів температура Дебая лежить в інтервалі від 100 до 300 K.
Щоб отримати повну енергію і теплоємність кристалічної решітки, треба до вкладу акустичних коливань додати внесок оптичних гілок, для якого хорошим наближенням є модель Ейнштейна. Цей внесок пренебрежимо малий при низьких температурах. При високих температурах вклади всіх гілок в енергію і теплоємність рівні.

Структурні дефекти кристалічної решітки
До структурних дефектів відносяться геометричні відхилення елементів решітки від регулярного розташування в ідеальних решітках.
Класифікація можливих структурних дефектів у ґратах кристала можлива на основі просторової довжини. Ми розрізняємо, тому крапкові, лінійні й поверхневі дефекти або відповідно нуль - мірні, одномірні й двомірні дефекти. Найважливіші типи дефектів будови кристала наведені нижче.
Крапкові дефекти: дефекти по Френкелю, дефекти по Шоттки, антидефекти поФренкелю, антидефекти по Шоттки.
Лінійні дефекти: дислокація.
Поверхневі дефекти: малокутова границя зерна, більшекутова границя зерна,дефект упакування, двійник.
Поряд із цим є безліч складних і ще маловивчених дефектів структури, наприклад скупчення крапкових дефектів в «хмари», які перевищують атомарні розміри. Різні дефекти структури часто проявляються в кристалі не в чистому виді: вони взаємно впливають один на одного й можуть реагувати один з одним.
Тому що крапкові дефекти мають у трьох кристалографічних напрямках атомарні розміри, їх називають ще атомними дефектами. Дефекти по Френкелю й по Шоттки принципово відрізняються від лінійних і поверхневих дефектів тим, що вони перебувають у тепловій рівновазі. Тому неможливо одержати ідеальні кристали при нормальній температурі. Навіть якби вони були вільні від дислокацій і не мали б яких-небудь поверхневих дефектів, при температурі, що відрізняється від 0°ДО, варто було б зважати на певну рівноважну концентрацію атомних дефектів.
Такий вид невпорядкованості називається, тому власною або термічної (термодинамічної) невпорядкованістю.

Рис. 10.8. Чотири основних типи термічних дефектів у бінарних іонних кристалах типу АВ:
а - дефект по Френкелю; б - дефект по Шоттки; в - антидефект по Френкелю;
г - антидефект по Шоттки; 1 - катіон, 2 - аннон: 3 - вакансія
Чотири основних типи термічних дефектів для бінарного іонного кристала типу АВ наведені на мал. 10.8.
Розрахунок дефектів по Шоттки можна виконати за допомогою відомих термодинамічних функцій стану. При виникненні дефектів у ґратах підвищується яквнутрішня енергіяU, так й ентропіясистеми S. Рівноважна концентрація дефектів виходить тоді з умови мінімуму вільної енергії, з рівняння F = U-T S (7.15). Отже, розрахунок концентрації дефектів зводиться до визначення величин U й S.Припустивши, що ніякої зміни обсягу не відбувається й концентрація дефектів настільки мала, що виключається взаємний вплив атомних дефектів структури, можна обчислити концентрацію дефектів по Шоттки для моноатомного кристала, тобто для кристала, що складає з атомів одного сорту.

Тому що число дефектів Шотткиn у порівнянні із загальним числом наявних у кристалі атомів мало (N>>n), те можна прийняти, що N-n N. Так що для числа вакансій, що перебувають у рівновазі при температурі Т можна записати так:
n=Ne або =e
Для концентрації дефектів по Френкелю виходить аналогічне співвідношення. Якщо N -число можливих місць для міжузлових атомів, an- число атомів, які покинули свої місця в ґратах, то
Рис. 10.9. Циркуляція (контур) Бюргерса для крайової дислокації.
Лінія дислокації перпендикулярна
n =
де Е - енергія утворення дефекту по Френкелю.
У ґратах іонних кристалів типу АВз дефектами по Шоттки за принципом електричної нейтральності може виникати тільки рівне число катіонних й аніонних вакансій. У цьому випадку необхідна енергія для утворення пари вакансій. Такі види дефектів у певних кристалічних ґратах є переважними, залежить в основному від величини необхідних енергій активації.

До цієї групи дефектів структури ставляться крайові дислокації й гвинтові дислокації. Їх варто розглядати не як два принципово відрізняються типу дислокацій, а тільки як два граничних випадки, що залежать від орієнтації лінії дислокації стосовно вектора Бюргерса. Під дислокацією або лінією дислокації розуміють лінію, що відокремлює область кристала, що перетерпіла зрушення,від незрушеної. Вектор Бюргерса дає величину й напрямок зрушення
Рис. 10.10. Циркуляція(контур) Бюргерса для гвинтової дислокації.
лінія дислокації паралельна
атомів у кристалічних ґратах. Величина для так званих повних дислокацій є вектор у ґратах Бравэ розглянутої структури (див. 1.2. 1). Якщо не є вектором у ґратах Бравэ, тоді мають місце неповні або часткові дислокації. Величина вектора b , = b, є мірою дислокації.
Точно описати дислокацію можна за допомогою так називаного контуру Бюргерса, обходячи лінію дислокації в площині, що розташована перпендикулярно до цієї лінії. Таким шляхом можна або повернутися у вихідну точку, або відхилитися від її на величину, що відповідає вектору Бюргерса. На мал. 10.9 і мал. 10.10 зображена циркуляція (контур) Бюргерса для крайової й гвинтової дислокації. Крайова дислокація позначається символом . Вертикальна риса символізує всунуту атомну площина (з однієї сторони площини дислокації ґрати складаються з n+1 атомних зарядів, яким протистоять й атомних рядів). Горизонтальна риса умовно показує площину зрушення. У випадку крайової дислокації обхід по контурі Бюргерса приводить до повернення у вихідну точку, що лежить у тій же площині. Вектор Бюргерса проходить у цьому випадку перпендикулярно до напрямку дислокації (визначення крайової дислокації).
У випадку гвинтової дислокації (мал. 10.10) один оберт дає відхилення від вихідної точки на величину трансляції, що відповідає вектору Бюргерса й напрямок якої проходить паралельно лінії дислокації (визначення гвинтової дислокації). У загальному випадку лінія дислокації скривлена й розрізняють одночасно крайову й гвинтову компоненти дислокації.
З мал. 10.9 треба, що крайова дислокація являє собою лінійне розташування атомів, координація яких відрізняється від нормальної координації. У найближчому оточенні гвинтової дислокації координаційний багатогранник хоча й зберігається, але він також сильно перекручений. Дислокація представляє, таким чином, місце скупчення додаткової енергії в кристалі, тому що один ряд атомів стосовносвоїх сусідів перебуває в перекрученому положенні.
Дислокації можуть виникнути, наприклад, при механічному навантаженні кристала. На мал. 10.11 показане утворення крайової дислокації при механічному зрушенні верхньої частини ґрати (мал. 10.11, а). При впливі здвигової напруги дислокація переміщається через кристал (мал. 10.11, б) і, зрештою, виходить на його поверхню мал. 10.11, в). При цьому на поверхні виникає елементарна сходинка, висота якої відповідає величині вектора Бюргерса. Залежно від числа дислокацій, що пересунулися, в одній площині ковзання виникаючий щабель ковзання може бути кратний елементарного щабля.

Рис. 10.11. Виникнення й пересування крайової дислокації
Дислокації не можуть починатися або закінчуватися у середині одного кристала кінцевих розмірів. Вони замикаються усередині з утворенням дислокаційного кільця або виходять на поверхню з утворенням дислокаційної петлі.
У кожній певній структурі стійкі тільки деякі вектори Бюргерса ( а значить і дислокації). Причина полягає в так званих дислокаційних реакціях при,яких дислокації з нестійкими векторами Бюргерса розщеплюються з виділенням енергії й утворенням стабільних дислокацій. Тому дислокаційна реакція, подібно хімічної реакції, має певний тепловий ефект Q. Якщо енергія Q вивільняється при розщепленні однієї дислокації з більшим вектором Бюргерса на дві з меншими векторами, то реакція буде протікати мимовільно.
Цей процес розщеплення буде відбуватися доти, поки не залишиться лише невелика кількість векторів Бюргерса (векторів ковзання),які звичайно відповідають найкоротшим відстаням у ґратах Бравє (при повних дислокаціях).
Дислокації не можуть виникати в бездефектному кристалі при однорідному нагріванні так як за рахунок чисто теплового руху часток. Енергія активації, необхідна для виникнення дислокацій, не може бути забезпечена коливаннями ґрат (вони можуть викликати перекручування тільки в областях атомних розмірів). Тому дислокації можуть виникнути тільки при дії зовнішньої напруги. Якщо кристал уже має дислокації, наприклад, дислокації, що виникли при його росту, то достатні вже досить малі напруги, щоб підвищити концентрацію дислокацій за рахунок так званих процесів розмноження.
Для характеристики реальної структури, що містить дислокації, використають поняття щільності дислокацій, розуміючи під цим число дислокацій, які проходять через одиницю поверхні в 1 див . Щільність дислокацій у кристалів може коливатися від 0 до 1012 див2. Вона залежить від умов одержання кристалів і наступної їхньої обробки. Щільність дислокацій сильно підвищується завдяки механічним впливам. При виконанні належних умов вирощування кристалів зараз вдається виготовляти більші бездислокаційні кристали деяких речовин, наприклад кремнію й германія.