ПІРО-, П'ЄЗО-1 СЕГНЕТОЕЛЕКТРИКИ
Серед діелектричних матеріалів в особливий клас варто виділити матеріали, які спроможні поляризуватися самодовільно, спонтанно. Спонтанна поляризація є слідством просторового поділу центрів мас позитивних і негативних зарядів в елементарній комірці кристалічної ґратки матеріалу. Якщо кристал тривалий час знаходиться при постійних умовах, то зовнішньо спонтанна поляризація не виявляється, тому що існуюче в діелектрику поле компенсується вільними зарядами всередині матеріалу або ж зарядами, адсорбованими на поверхні. При зміні ж зовнішніх параметрів стану цих матеріалів на гранях кристала з'являється електрична напруга. Так, при зміні температури кристалу тригліцинсульфата розміром 1 х 1 х 1 (уи на 1К на гранях, перпендикулярних полярній осі, виникає напруга до 2-103 В. Електризація діелектрика при зміні температури називається піроелектричним ефектом, а матеріали, у котрих цей ефект виражений найбільш чітко піроелектриками.
Необхідно відзначити, що електричне поле виникає тільки при зміні температури, і воно зникає в ізотермічному режимі. Така поведінка системи цілком з'ясована з погляду закону збереження енергії. Дійсно, створити електричне поле, не виконуючи над системою роботи, принципово неможливо.
З приведеного приклада очевидно, що піроелектрики виявляють високу чутливість до теплових впливів (точність визначення температури за допомогою піроелектрика до 10~5 К ). Ця їх властивість широко використовується в техніці для створення перетворювачів теплової енергії в електричну. В даний час створені приймачі теплового випромінювання з високою винахідливою спроможністю, детектори потужних і коротких температурних імпульсів. Піроелектрики дозволяють здійснити візуалізацію інфрачервоних зображень. Найбільш піроактивними матеріалами з відомих діелектриків є полівінілфторид і полівінілліденфторид.
Матеріали, спроможні поляризуватися під дією механічних напруг у відсутності зовнішнього поля називають п'єзоелектриками, а фізичне явище поляризації, що супроводжує деформацію, - п'єзоефектом. Його причиною служить зсув позитивних і негативних іонів або фрагментів молекул у кристалах, де відсутній центр симетрії. Відомий прямий та обернений п'єзоефект. Під прямим п'єзоефектом розуміють появу електричних зарядів на гранях кристалу, що знаходиться під дією зовнішньої механічної напруги. Обернений - традиційно пов'язують із деформацією діелектрика в зовнішньому електричному полі. Таким чином, п'єзоефект є оборотним явищем.
Кількісною мірою п'єзоефекту є п'єзомодуль сі - коефіцієнт пропорційності між поляризованістю Р (електричною індукцією) діелектрика і механічною напругою о: Р=сіа, де сі - п'єзомодуль. Середнє значення п'єзомодуля в кращих зразках п'єзоелектриків знаходиться на рівні 10""10 Кл/Н .
Традиційним матеріалом для п'єзоелементів є кварц. На основі кварцових монокристалів виготовляють багато компонентів нового напрямку в електроніці - акустоелектроніки. Акустоелектронні пристрої дозволяють генерувати і приймати ультразвукові сигнали, служити стабілізаторами частоти, різного роду фільтрами, лініями затримки, виконувати перетворення сигналів: змінювати їх тривалість, зсув фаз, виконувати кореляційні операції і т.д.
Найбільш повно в мікроелектроніці п'єзоефект реалізується в приладах на поверхнево активних хвилях (ПАХ). Планарна конструкція приладів на ПАХ, їх технологічна сумісність з інтегральними мікросхемами, мініатюрність надає великі можливості акустоелектроніці. Для підвищення ефективності функціонування приладів на ПАХ дослідники усе більше приділяють увагу крім діелектриків і широкозонним напівпровідниковим сполукам. Зокрема, напівпровідниковими п'єзоелектриками є сполуки типу А^6 - Са8е, СсіТе, і А^5 -ОаАз, ОаР і т.д.
Серед піроелектриків існують діелектрики, вектор спонтанної поляризації яких під дією електричного поля змінює свій напрямок. Такі матеріали виділяють в особливу групу -сегнетоелектрики. Електричне поле, що створюється в комірці кристалічної ґратки сегнетоелектрика, настільки велике, що існування однодоменного стану кристала виявляється енергетичне невигідним. Це призводить до утворення в матеріалі доменної електричної структури, подібної тій, що характерна для феромагнетиків. Слід зазначити, що з утворенням електричних доменів кристал як би розпадається на мікродільниці з піроелектричними властивостями, проте в макромасштабі піроелектричний ефект виявляється нівельованим через різноманітну орієнтацію векторів індукції кожного домена. У цьому відношенні, тобто у мікроскопічному наближенні, сегнетоелектрик одночасно є піро- і п'єзоелектриком. Тому в належних умовах вони є найбільш універсальними активними, тобто спроможними перетворювати енергію з одного виду в інший, діелектриками.
Доменна структура сегнетоелектриків надає йому зовнішньої подібності з феромагнетиками з усіма слідствами, що звідси випливають. Для сегнетоелектриків типовий електричний гістерезіс, тобто відставання поляризації від напруженості електричного поля, що її викликає. Причина його появи та ж, що й у магнітного гістерезісу - додаткові витрати на зсув і обертання доменів. Як і у феромагнетиків для сегнетоелектриків характерне високе значення діелектричної проникності (до 10000) і її залежність від напруженості поля, частоти і температури. Сегнетоелектрики мають точку Кюрі, при котрій доменна структура зникає. Відзначимо, що типові значення температур Кюрі у сегнетоелектриків знаходяться в інтервалі 373 - 473 К. Це означає невисоку стабільність їх параметрів при звичайних умовах. За параметрами петлі гістерезісу сегнетоелектрики розділяють на сегнетом'які і сегнетотверді.
Незважаючи на зовнішню подібність у поведінці сегнетоелектриків і феромагнетиків в електричному і магнітних полях відповідно, необхідно брати до уваги принципове розходження у фізичних процесах, відповідальних за ці явища. Дійсно, у сегнетоелектриках поява в матеріалі областей із спонтанною поляризацією обумовлена зміною кристалічної структури (фазовий перехід другого роду) при температурі Кюрі. У феромагнетиках же домени є слідством обмінної взаємодії й орієнтації магнітних моментів атомів в об'ємі одного окремо взятого домена, а не всієї ґратки.
Найбільш досліджувані сегнетоелектрики зі структурою піровскіта - твердих розчинів оксидів виду АВОз, де А -двовалентні метали Ва, Са, 5г, РЬ; В - чотиривалентні метали Ті, 2г; О - кисень. Кращі параметри в даний час досягнуті з використанням твердих розчинів на основі ВаТіОз, властивості яких можна змінювати, керуючи їх композиційним складом. Ці матеріали отримують по керамічній технології, що набагато простіше і дешевше технології отримання монокристалічного стану.