Переходные процессы в электрических цепях с последовательно соединенными резисторами и катушками
Алгоритм расчета переходного процесса классическим методом
Для анализа переходного процесса предварительно следует привести схему к минимальному числу накопителей энергии, исключив параллельные и последовательные соединения однотипных реактивных элементов (индуктивностей или емкостей). Система интегродифференциальных уравнений, составленных в соответствии с законами Кирхгофа или методом контурных токов, может быть сведена путем подстановки к одному дифференциальному уравнению, которое используется для составления характеристического уравнения.
Порядок дифференциального, следовательно, и характеристического уравнения зависит от числа реактивных элементов приведенной схемы. Главная трудность в решения задачи классическим методом для уравнений высоких порядков состоит в отыскании корней характеристического уравнения и постоянных интегрирования. Поэтому для решения уравнений порядка выше второго применяют другие методы, в частности операторный метод, основанный на применении преобразования Лапласа и исключающий трудоемкую процедуру отыскания постоянных интегрирования.
Для практических целей при анализе переходных процессов в любой схеме классическим методом может быть рекомендован следующий алгоритм.
1. Рассчитать принужденный (установившийся) режим при t→∞. Определить принужденные токи и напряжения.
2. Рассчитать режим до коммутации. Определить токи в ветвях с индуктивностью и напряжения на конденсаторах. Значения этих величин в момент коммутации является независимыми начальными условиями.
3. Составить дифференциальные уравнения для свободного процесса (Е = 0) в схеме после коммутации по законам Кирхгофа или по методу контурных токов. Алгебраизировать данные уравнения, получить характеристическое уравнение и найти его корни. Существуют приемы, упрощающие операцию отыскания корней характеристического уравнения, например, приравнивание нулю входного операторного сопротивления цепи, которое получается путем замены в выражении комплексного сопротивления цепи множителя "jω" на оператор "р".
4. Записать общие выражения для искомых напряжений и токов в соответствии с видом корней характеристического уравнения.
5. Переписать величины, полученные в п. 4, и производные от них при t = 0.
6. Определить необходимые зависимые начальные условия, используя независимые начальные условия.
7. Подставив начальные условия в уравнения п. 5, найти постоянные интегрирования.
8. Записать законы изменения искомых токов и напряжений.
В данном разделе предполагается не только практическое знакомство с классическим методом расчета переходных процессов, но и с особенностями самих процессов в рассматриваемых задачах.