Расчет фильтра по частотной характеристике.
В качестве примера проведем расчет простого симметричного сглаживающего НЦФ исходя непосредственно из требуемой формы частотной характеристики. Расчет выполним для фильтра с окном в пять точек:
yk = ask-2+bsk-1+csk+bsk+1+ask+2. (2.4.1)
Полагаем sk = exp(jwk), при этом yk = H(w)exp(jwk). Подставляем значения входного и выходного сигнала в уравнение фильтра, сокращаем левую и правую части на общий член exp(jwk) и, объединяя комплексно сопряженные члены в правой части, получаем уравнение передаточной функции:
Рис. 2.4.1. Частотные характеристики НЦФ. |
H(w) = 2a cos(2w)+2b cos(w)+ c.
Сокращаем количество параметров функции заданием граничных условий по частоте. Как правило, имеет смысл принять: H(0) = 1, H(p) = 0. Отсюда:
H(0) = 2a+2b+c = 1,
H(p) = 2a-2b+c = 0.
B = 1/4, c = 1/2-2a.
При этом функция H(w) превращается в однопараметровую:
H(w) = 2a(cos(2w)-1)+(cos(w)+1)/2.
По полученному выражению рекомендуется построить семейство кривых в параметрической зависимости от значений 'а' и выбрать фильтр, удовлетворяющий заданию. Пример семейства частотных характеристик приведен на рисунке 2.4.1.
Можно наложить еще одно дополнительное условие и определить все коэффициенты фильтра непосредственно. Так, например, если к двум граничным условиям задать третье условие сбалансированности: H(w=p/2) = 0.5, то из трех полученных уравнений сразу же получим все три коэффициента фильтра: a = 0, b = 1/4, c = 1/2 (фильтр сокращается до трех точек).
В принципе, таким методом можно задать любую произвольную форму частотной характеристики симметричного НЦФ с произвольным количеством N точек дискретизации, что определит полное уравнение (2.4.1) с окном 2N+1 точка и соответствующую передаточную функцию фильтра, по которой можно составить и решить N+1 уравнение для определения коэффициентов фильтра.