Двумерные графики


Решение систем неравенств

С помощью команды solve можно также решить систему неравенств. Например:

>solve({x+y>=2,x-2*y<=1,x-y>=0,x-2*y>=1},{x,y});

Для построения графиков функции f(x)одной переменной (в интервале по оси Ох и в интервале по оси Оу) используется команда plot(f(x), x=a..b, y=c..d, parameters),гдеparameters– параметры управления изображением.

Если их не указывать, то будут использованы установки по умолчанию.

Основные параметры команды plot:

1) title="text", где text-заголовок рисунка (текст можно оставлять без кавычек, если он содержит только латинские буквы без пробелов).

2) coords=polar – установка полярных координат (по умолчанию установлены декартовы).

3) axes – установка типа координатных осей: axes=NORMAL – обычные оси; axes=BOXED – график в рамке со шкалой; axes=FRAME – оси с центром в левом нижнем углу рисунка; axes=NONE – без осей.

4) scaling – установка масштаба рисунка: scaling=CONSTRAINED – одинаковый масштаб по осям; scaling=UNCONSTRAINED – график масштабируется по размерам окна.

5) style=LINE(POINT) – вывод линиями (или точками).

6) numpoints=n – число вычисляемых точек графика (по умолчанию n=49).

7) сolor – установка цвета линии: английское название цвета, например, yellow – желтый и т.д.

8) xtickmarks=nx и ytickmarks=ny – число меток по оси Оx и оси Оy, соответственно.

9) thickness=n, где n=1,2,3… - толщина линии (по умолчанию n=1).

10) linestyle=n – тип линии: непрерывная, пунктирная и т.д. (n=1 – непрерывная, установлено по умолчанию).

11) symbol=s – тип символа, которым помечают точки: BOX, CROSS, CIRCLE, POINT, DIAMOND.

12) font=[f,style,size] – установка типа шрифта для вывода текста: f задает название шрифтов: TIMES, COURIER, HELVETICA, SYMBOL; style задает стиль шрифта: BOLD, ITALIC, UNDERLINE; size – размер шрифта в pt.

13) labels=[tx,ty] – надписи по осям координат: tx – по оси Оx и ty – по оси Оy.

14) discont=true – указание для построения бесконечных разрывов.

С помощью команды plot можно строить помимо графиков функций y=f(x), заданной явно, также графики функций, заданных параметрически y=y(t), x=x(t), если записать команду plot([y=y(t), x=x(t), t=a..b], parameters).

Построить график жирной линией в интервале от -4*π до 4*π.

>plot(sin(x)/x, x=-4*Pi..4*Pi, labels=[x,y], labelfont=[TIMES,ITALIC.12], thickness=2);


 

Построить график разрывной функции

>plot(x/(x^2-1), x=-3..3, y=-3..3, color=magenta);


 

Построить два графика на одном рисунке: график функциии касательную к нему

>plot([ln(3*x-1), 3*x/2-ln(2)], x=0..6, scaling=CONSTRAINED, color=[violet, gold], linestyle=[1, 2], thickness=[3, 2]);