Выбор способа охлаждения


При выборе способа охлаждения ЭА учитываются ее режим работы, конструктивное исполнение, величина рассеиваемой мощности, объект ус­тановки, окружающая среда.

Режим работы аппаратуры бывает длительным, кратковременным, кратковременно-повторным и характеризуется длительностями включенно­го и выключенного состояний. Длительный режим свойственен стационар­ной аппаратуре, которая находится во включенном состоянии в продолже­нии многих часов, кратковременный — бортовой, время работы которой мало и исчисляется несколькими минутами или часами. С большой вероят­ностью можно утверждать, что при проектировании сложной аппаратуры с длительным временем включенного состояния возникнет необходимость в разработке принудительной системы охлаждения (СО). Для аппаратуры ра­зового использования с кратковременным режимом работы возможно обой­тись без принудительной СО. Решение о разработке СО для аппаратуры кратковременно-повторного режима работы принимается лишь после ана­лиза длительностей включенного-выключенного состояний и характера ее перегрева и охлаждения.

Переносная ЭА в силу малых рассеиваемых мощностей принудитель­ной СО не снабжается. В сложной аппаратуре необходимо использовать принудительную воздушную или водо-воздушную СО. Водо-воздушной СО снабжаются, например, ЭВМ в герметичном исполнении.

Тепловой анализ ЭА позволяет получить предварительные данные о разрабатываемой СО. Для этого по каждому модулю первого уровня состав­ляется перечень тепловыделяющих компонентов, устанавливаются рассеи­ваемые мощности и максимально допустимые температуры. На основе этих данных выделяются критичные к перегреву компоненты, а также компонен­ты, устанавливаемые на теплоотводы. Далее рассчитываются удельные по­верхностные или/и объемные тепловые потоки модулей высших уровней. Для этого нужно вычислить мощности, рассеиваемые в модулях компонен­тами, внешнюю поверхность или объем модулей. По значениям плотности теплового потока qs и qv в первом приближении выбирают систему охлаж­дения (табл. 4.10) по допустимому перегреву в 40 °С.

Таблица 4.10. Плотность тепловых потоков аппаратуры

 

Способ охлаждения Негерметичная qs, Вт/см2, не более Герметичная qv, Вт/см3, не более
Естественная конвекция Принудительная конвекция Водо-воздушный 0,05 0,50   0,65 0,02 0,45   0,60

Затем для всех модулей, начиная с модулей первого уровней, состав­ляется перечень компонентов или модулей низших уровней, осуществляется размещение их по критерию минимального перегрева, по уравнению тепло­вого баланса определяется расход хладагента. Если в качестве хладагента предполагается использовать воздух, то необходимо установить его количе­ство, максимально возможную температуру на входе СО, проверить запы­ленность и наличие в нем агрессивных примесей. Присутствие пыли в воз­духе требует установки противопылевых фильтров. Наличие в воздухе агрессивных газов, например сернистого ангидрида, вызывающего интен­сивную коррозию металлических конструкций, потребует применения спе­циальных фильтров.

Воздух на входе СО может оказаться теплым, для его охлаждения до необходимой температуры в СО предусматривается кондиционер. При от­сутствии на объекте эксплуатации воздуха в необходимом количестве или с необходимыми параметрами можно использовать жидкий хладагент (воду, топливо) по схеме водо-воздушного охлаждения. Температура жидкого хла­дагента может быть понижена теплообменниками.

Отсутствие на объекте достаточного количества воздуха или жидко­сти заставляет конструктора предусмотреть отвод теплоты на холодные массивные элементы несущих конструкций кондукцией. Если на объекте не окажется источников электропитания с требуемыми напряжениями и мощ­ностями, возникает необходимость во введении в конструкцию источников питания СО, что несомненно ухудшит основные конструктивные параметры охлаждаемой ЭА.