Современные представления о строении атома. Кварковая модель строения атома


 

Итак, мы выяснили, что атом представляет собой сложную микросистему находящихся в движении элементарных частиц. Он состоит из положительно заряженного ядра и отрицательно заряженных электронов. Носителем положительного заряда ядра является протон. В ядрах атомов всех элементов, за исключением ядра легкого изотопа водорода, входят протоны и нейтроны.

Ядро составляет фундаментальную основу атома и определяет индивидуальность элементов.

Важной характеристикой ядра является массовое число A, которое равно общему числу протонов Z и нейтронов N (нуклоны), входящих в состав ядра:

 

A = Z + N . (3.12)

 

Атомы с различным числом протонов (Z) и нейтронов (N), но с одинаковым числом нуклонов (A) называются изобарами. Атомы с одинаковым числом протонов (Z) называются изотопами, а с одинаковым числом нейтронов (N) – изотонами. Согласно современной теории атомное ядро имеет оболочное строение. Протоны и нейтроны независимо друг от друга заполняют ядерные слои и подслои, подобно тому, как это наблюдается для электронов в электронной оболочке.

В настоящее время открыто бо­лее 350 микрочастиц, входящих в сосав атома. Термин «элементарная частица» первоначально означал про­стейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина «элементарный» примени­тельно к микрообъектам. Сейчас уже не подлежит сомнению, что частицы имеют ту или иную структуру, но тем не менее ис­торически сложившееся название продолжает существовать.

Основными характеристиками элементарных частиц явля­ютсямасса, заряд, среднее время жизни, спин и квантовые числа.

Массу покоя элементарных частиц определяют по отноше­нию к массе покоя электрона. Существуют элементарные час­тицы, не имеющие массы покоя, — фотоны. Остальные части­цы по этому признаку делятся на лептоны — легкие частицы (электрон и нейтрино); мезоны — средние частицы с массой в пределах от одной до тысячи масс электрона; барионы — тяже­лые частицы, чья масса превышает тысячу масс электрона и в состав которых входят протоны, нейтроны, гипероны и многие резонансы.

Электрический заряд является другой важнейшей характери­стикой элементарных частиц. Все известные частицы обладают положительным, отрицательным либо нулевым зарядом. Каж­дой частице, кроме фотона и двух мезонов, соответствуют ан­тичастицы с противоположным зарядом. В 1967 г. американ­ский физикМ. Телл-Манн высказал гипотезу о существовании кварков — частиц с дробным электрическим зарядом.

По времени жизни частицы делятся на стабильные и неста­бильные. Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно стабильные частицы иг­рают важнейшую роль в структуре макротел. Все остальные частицы нестабильны.

Помимо заряда, массы и времени жизни, элементарные частицы описываются также понятиями, не имеющими анало­гов в классической физике: понятием«спина», или собственного момента количества движения микрочастицы, и понятием ' «квантовых чисел», выражающих состояние элементарных частиц. Согласно современным представлениям, все элементарные частицы делятся на два класса —фермионы (названные в честь Э. Ферми) ибозоны (названные в честь Ш. Бозе).

К фермионам относятся кварки и лептоны, к бозонам — кванты полей (фотоны, векторные бозоны, глюоны, гравитино и гравитоны). Эти частицы считаютсяистинно элементарными,т.е. далее неразложимыми. Остальные частицы классифициру­ютсякак условно элементарные, т.е. составные частицы, образо­ванные из кварков и соответствующих квантов полей. Фермио­ны составляютвещество, бозоны переносятвзаимодействие.

Элементарные частицы участвуют во всех видах известных взаимодействий. Различают четыре видафундаментальных взаи­модействий в природе: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует на расстоянии порядка 10-13 см. При определенных условиях сильное взаимодействие очень прочно связывает частицы, в результате чего образуются мате­риальные системы с высокой энергией связи — атомные ядра. Именно по этой причине ядра атомов являются весьма устой­чивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заря­женным частицам. Носителем электромагнитного взаимодейст­вия является не имеющий заряда фотон — квант электромаг­нитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы — в молекулы. В определенном смысле это взаимодействие являет­ся основным в химии и биологии.

Слабое взаимодействие возможно между различными части­цами. Оно простирается на расстояние порядка 10-15 — 10-22 см и связано главным образом с распадом частиц, например, с происходящими в атомном ядре превращениями нейтрона в протон, электрон и антинейтрино. В соответствии с современ­ным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию.

Гравитационное взаимодействие — самое слабое, не учиты­ваемое в теории элементарных частиц, поскольку на характер­ных для них расстояниях порядка 10-13 см оно дает чрезвычай­но малые эффекты. Однако на ультрамалых расстояниях (порядка 10-33 см) и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Здесь начинают проявляться необычные свойства физического вакуума. Сверх­тяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства. В космических масштабах гравитационное взаи­модействие имеет решающее значение. Радиус его действия не ограничен.

Все четыре взаимодействиянеобходимы и достаточны для построения разнообразного мира.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Без электромагнитных взаимодействий не было бы ни ато­мов, ни молекул, ни макроскопических объектов, а также тепла и света.

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эво­люционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

Современная физика пришла к выводу, что все четыре фун­даментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материаль­ного мира, можно получить из одного фундаментального взаи­модействия —суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозмож­но. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как эксперименталь­ный материал, накопленный Вселенной.

Достижения в области исследования элементарных частиц способствовали дальнейшему развитию концепции атомизма. В настоящее время считают, что среди множества элементарных частиц можно выделить12 фундаментальных частиц и столько же античастиц. Шесть частиц — это кварки с экзотическими названиями «верхний», «нижний», «очарованный», «странный», «истинный», «прелестный». Остальные шесть — лептоны: элек­трон, мюон, тау-частица и соответствующие им нейтрино (электронное, мюонное, тау-нейтрино).

Эти 12 частиц группируют в три поколения, каждое из ко­торых состоит из четырех членов.

В первом поколении — «верхний» и «нижний» кварки, электрон и электронное нейтрино.

Структурные уровни организации материи Во втором поколении — «очарованный» и «странный» квар­ки, мюон и мюонное нейтрино.

В третьем поколении — «истинный» и «прелестный» кварки и тау-частицы со своим нейтрино.