Распределение Пуассона.


(Симеон Дени Пуассон (1781 – 1840) – французский математик)

 

Пусть производится п независимых испытаний, в которых появление события А имеет вероятность р. Если число испытаний п достаточно велико, а вероятность появления события А в каждом испытании мало (p£0,1), то для нахождения вероятности появления события А k раз находится следующим образом.

 

Сделаем важное допущение – произведение пр сохраняет постоянное значение:

 

Практически это допущение означает, что среднее число появления события в различных сериях испытаний (при разном п) остается неизменным.

 

По формуле Бернулли получаем:

 

Найдем предел этой вероятности при п®¥.

 

 


Получаем формулу распределения Пуассона:

 

 

Если известны числа l и k, то значения вероятности можно найти по соответствующим таблицам распределения Пуассона.