Реферат: Аркфункции

Название: Аркфункции
Раздел: Рефераты по математике
Тип: реферат    

Примеры: в нижеследующих примерах приведены образцы исследования элементарных функций, заданных формулами, содержащими обратные тригонометрические функции.

            Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики.

Решение: Рассмотрим 1-ю функцию

y

 

y

 
            y = arcsin(1/x)

π/2

 

-π/2

 
Д(f): | 1/x | ≤ 1 ,

            | x | ≥ 1 ,

( - ∞ ; -1 ] U [ 1; + ∞ )

y

 

x

 


Функция нечетная

( f(x) убывает на пр. [0;1] , f(y) убывает на пр. [0;π/2] )

y

 
Заметим, что функция y=arccosec(x) определяется из условий cosec(y)=x и y є [-π/2; π/2], но из условия cosec(y)=x следует sin(y)=1/x, откуда

π

 
y=arcsin(1/x). Итак, arccos(1/x)=arcsec(x)


Д(f): ( - ∞ ; -1 ] U [ 1; + ∞ )


Пример №2. Исследовать функцию y=arccos(x2).

π/2

 
Решение:

Д(f): [-1;1]

Четная

f(x) убывает на пр. [0;1]

-1

 

0

 
f(x) возрастает на пр. [-1;0]

1

 

x

 


Пример №3. Исследовать функцию y=arccos2(x).

Решение: Пусть z = arccos(x), тогда y = z2

f(z) убывает на пр. [-1;1] от π до 0.

f(y) убывает на пр. [-1;1] от π2 до 0.


Пример №4. Исследовать функцию y=arctg(1/(x2-1))

Решение:

Д(f): ( - ∞ ; -1 ) U ( -1; 1 ) U ( 1; +∞ )

Т.к. функция четная, то достаточно исследовать функцию на двух промежутках:

y

 
[ 0 ; 1 ) и ( 1 ; +∞ )


π/2

 
X

0 < x < 1 < x < +∞

1

 

-1

 
u=1/(x2-1)

-1

+ ∞

- ∞

0

0

 

x

 
y=arctg(u)

- π/4

π/2

- π/2

0

-π/4

 

-π/2

 



Тригонометрические операции над аркфункциями

Тригонометрические функции от одного и того же аргумента выражаются алгебраически  одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение.

В силу определения аркфункций:

sin(arcsin(x)) = x ,                                           cos(arccos(x)) = x

(справедливо только для x є [-1;1] )

tg(arctg(x)) = x ,                                              ctg(arcctg(x)) = x

            (справедливо при любых x )

Графическое различие между функциями, заданными формулами:

                                y=x                                  и                                  y=sin(arcsin(x))


Сводка формул, получающихся в результате выполнения простейших тригонометрических операций над аркфункциями.


Аргумент

функция

arcsin(x) arccos(x) arctg(x) arcctg(x)
sin sin(arcsin(x))=x

cos

x

tg

x 1 / x
ctg

1 / x x

Справедливость всех этих формул может быть установлена при помощи рассуждений, приведенных ниже:

1.    Т.к. cos2x + sin2x = 1 и φ = arcsin(x)

Перед радикалом следует взять знак “+”, т.к. дуга принадлежит правой полуокружности (замкнутой) , на которой косинус неотрицательный.

Значит, имеем

2.    Из тождества следует:

 

3.    Имеем

4.   

Ниже приведены образцы выполнения различных преобразований посредством выведения формул.

Пример №1. Преобразовать выражение

Решение: Применяем формулу , имеем:

Пример №2. Подобным же образом устанавливается справедливость тождеств:

Пример №3. Пользуясь ...

            Пример №4. Аналогично можно доказать следующие тождества:

Пример №5. Положив в формулах

,       и         

, получим:

,                       

Пример №6. Преобразуем

Положив в формуле ,             

Получим:

           

Перед радикалами взят знак “+”, т.к. дуга принадлежит I четверти, а потому левая часть неотрицательная.

Соотношения между аркфункциями

Соотношения первого рода – соотношения между аркфункциями, вытекающими из зависимости между тригонометрическими функциями дополнительных дуг.

Теорема. При всех допустимых х имеют место тождества:

arccos(x)

 

arcsin(x)

 


-1

 

1

 

y

 

x

 

Соотношения второго рода – соотношения между аркфункциями, вытекающие из соотношений между значениями тригонометрических функций от одного и того же аргумента. Посредством соотношений 2-го рода производятся преобразования одной аркфункции в другую (но от различных аргументов).

Случай №1. Значения двух данных аркфункций заключены в одной и той же полуокружности.

Пусть, например, рассматривается дуга α, заключенная в интервале (-π/2; π/2).

Данная дуга может быть представлена как в виде арксинуса, так и в виде арктангенса. В самом деле, дуга имеет синус, равный sinα и заключена, так же как и α, в интервале (-π/2; π/2), следовательно

Аналогично можно дугу α представить в виде арктангенса:

А если бы дуга α была заключена в интервале ( 0 ; π ), то она могла бы быть представлена как в виде арккосинуса, так и в виде арккотангенса:

Так, например:

Аналогично:

Формулы преобразования одних аркфункций в другие, значения которых содержаться в одной и той же полуокружности (правой или верхней).

1.    Выражение через арктангенс.

Пусть , тогда

Дуга , по определению арктангенса, имеет тангенс, равный  и расположена в интервале (-π/2; π/2).

Дуга имеет тот же тангенс и расположена в том же интервале (-π/2; π/2).

Следовательно,

                                                                                 (1)

(в интервале ( -1 : 1 )

2.    Выражение через арксинус.

Т.к. ,    то                              (2)

в интервале

3.    Выражение арккосинуса через арккотангенс. Из равенства следует тождество

                                                                               (3)

Случай №2. Рассмотрим две аркфункции, значения которых выбираются в различных промежутках (например, арксинус и арккосинус; арккосинус и арктангенс и т.п.). Если аргумент какой-либо аркфункции (т.е. значение тригонометрической функции) положителен, то соответственно аркфункция (дуга), заключенная в первой четверти, может быть представлена при помощи любой аркфункции; так, например,

Поэтому каждая из аркфункций от положительного аргумента может быть выражена посредством любой другой аркфункции.

Значение какой-либо аркфункции от отрицательного аргумента принадлежит либо промежутку от -π/2 до 0, либо промежутку от π/2 до π и не может быть представлено в виде аркфункции, значение которой принадлежит другому (из этих двух) промежутку.

Так, например, дуга  не может быть значением арксинуса. В этом случае

Формулы преобразования одних аркфункций в другие, значения которых выбираются в различных полуокружностях.

4.    Выражение арксинуса через арккосинус.

Пусть , если , то . Дуга имеет косинус, равный , а поэтому

При это равенство выполняться не может. В самом деле, в этом случае

, а для функции имеем:

так как аргумент арккосинуса есть арифметический корень , т.е. число неотрицательное.

Расположение рассматриваемых дуг пояснено на рисунке:


                        Х>0                                                                 X<0

При отрицательных значениях Х имеем Х<0, а при положительных X>0, и

Таким образом, имеем окончательно:

если ,                    (4)

                 , если


График функции

-1

 

1

 


Область определения есть сегмент [-1;1]; согласно равенству (4),  закон соответствия можно выразить следующим образом:


                        , если

, если

5.    Аналогично установим, что при имеем:

, если же , то

Таким образом:

       , если                                                (5)

                        , если

6.    Выражение арктангенса через арккосинус. Из соотношения

 при имеем:

Если же х<0, то

Итак,

         , если                                                    (6)

                        , если

7.    Выражение арккосинуса через арктангенс. Если , то

При   имеем:

Итак,

       , если                                                 (7)

                        , если

8.    Выражение арктангенса через арккотангенс.

         , если х>0                                                                (8)

                        ,если x<0

При x>0 равенство (8) легко установить; если же x<0, то

.

9.    Выражение арксинуса через арккотангенс.

       , если                                               (9)

                        , если

10.  Выражение арккотангенса через арксинус.

       , если 0<x                                                       (10)

                        , если х<0

11.  Выражение арккотангенса через арктангенс.

         , если x>0                                                                  (11)

                        , если x<0

Примеры:

Пример №1. Исследовать функцию

Решение. Эта функция определена для всех значений х, за исключением значения х=0 (при х=0) второе слагаемое теряет смысл). Воспользовавшись формулой (8) получим:

Y

 


y=        0 , если x>0

            -π , если x<0


На чертеже изображен график

данной функции


Пример №2. Исследовать функцию

Решение: Первое слагаемое определено для значений , второе – для тех же значений аргумента. Преобразим первое слагаемое по формуле (4).

Т.к. , то получаем

,

откуда:

 на сегменте [0;1]

Пример №3. Исследовать функцию

Решение: Выражения, стоящие под знаками аркфункций не превосходят по абсолютной величине единицы, поэтому данная функция определена для всех значений х. Преобразуем первое слагаемое по формуле (4).

Приняв во внимание равенство

      , если

                        , если

получим:

y =       0 ,                                если

             , если

Выполнение обратных тригонометрических операций над тригонометрическими функциями.

При преобразовании выражений вида

следует принимать во внимание в какой четверти находится аргумент х и в каком промежутке находится значение данной аркфункции. Рассмотрим, например, первое из данных выражений:

Согласно определению арксинуса, y – есть дуга правой полуокружности (замкнутая), синус которой равен sin x;

    и         

Областью определения функции  служит интервал , так как при всех действительных значениях х значение промежуточного аргумента содержится на сегменте . При произвольном действительном х значение y (в общем случае) отлично от значения х.

Так, например, при х=π/6 имеем:

но при х=5π/6

В силу периодичности синуса функция arcsin x также является периодической с периодом 2π, поэтому достаточно исследовать ее на сегменте [-π/2; 3π/2] величиной 2π.

Если значение х принадлежит сегменту [-π/2; π/2] то y=x, на этом сегменте график функции совпадает с биссектрисой координатного угла.

Если значение х принадлежит сегменту [π/2; 3π/2], то в этом случае дуга π-х принадлежит сегменту [-π/2; π/2]; и, так как

, то имеем  y=π-х;

в этом промежутке график функции совпадает с прямой линией y=π-х. Если значение х принадлежит сегменту [3π/2; 5π/2], то, пользуясь периодичностью или путем непосредственной проверки, получим:

y=х-2π

Если значение х принадлежит сегменту [-3π/2; -π/2], то

y=-π-х

Если значение х принадлежит сегменту [-5π/2; -3π/2], то

y=х+2π

Вообще, если , то

y=х-2πk

и если , то

y=(π-х)+2πk

График функции представлен на рисунке. Это ломаная линия с бесконечным множеством прямолинейных звеньев.


Рассмотрим функцию

Согласно определению арккосинуса, имеем:

cos y = cos x, где

Областью определения данной функции является множество всех действительных чисел; функция периодическая, с периодом, равным 2π. Если значение Х принадлежит сегменту [0; π], то y = x. Если х принадлежит сегменту [π; 2π], то дуга 2π-х принадлежит сегменту [0; π] и , поэтому:

Следовательно, на сегменте [π; 2π] имеем y = 2π - x

Если х принадлежит сегменту [2π; 3π], то y = x - 2π

Если х принадлежит сегменту [3π; 4π], то y = 4π – x

Вообще, если , то y = x - 2πk

Если же , то y = -x + πk

Графиком функции является ломаная линия


Формулы сложения

Формулы сложения дают выражения для суммы или разности двух  (или нескольких) аркфункций через какую-либо данную аркфункцию. Пусть дана сумма аркфункций; над этой суммой можно выполнить любую тригонометрическую операцию. (....) В соответствии с этим дуга-функция может быть выражена посредством любой данной аркфункции. Однако в различных случаях (при одних и тех же аркфункциях) могут получаться различные формулы, в зависимости от промежутка, в котором берется значение рассматриваемой аркфункции.

Сказанное пояснено ниже на числовых примерах.

Примеры.

Пример №1. Преобразовать в арксинус сумму

Решение: эта сумма является суммой двух дуг α и β, где

;              

В данном случае  (т.к. , а следовательно, ), а также , поэтому .

Вычислив синус дуги γ, получим:

Т.к. сумма γ заключена на сегменте [-π/2; π/2], то

Пример №2. Представить дугу γ, рассмотренную в предыдущем примере, в виде арктангенса. Имеем:

Откуда

Пример №3. Представить посредством арктангенса сумму

Решение: в данном случае (в отличие от предыдущего) дуга γ оканчивается во второй четверти, т.к. , а . Вычисляем

В рассматриваемом примере , так как дуги γ и заключены в различных интервалах,

, а  

В данном случае

Пример №4. Представить дугу γ, рассмотренную в предыдущем примере, в виде арккосинуса.

Решение: имеем

Обе дуги γ и расположены в верхней полуокружности и имеют одинаковый косинус, следовательно, эти дуги равны:

Так как суммы и разности любых аркфункций можно выражать при помощи произвольных аркфункций, то можно получать самые разнообразные формулы сложения. Однако все эти формулы выводятся при помощи однотипных рассуждений. Ниже в качестве примеров даются некоторые из формул сложения, по этим образцам можно получить аналогичные формулы в различных прочих случаях.

Формулы сложения аркфункций от положительных аргументов.

Пусть α и β – две дуги, заключенные в промежутке от 0 до π/2 (первая четверть):

, и  

Сумма α + β заключена в верхней полуокружности , следовательно, ее можно представить в виде аркфункции, значение которой выбирается в том же интервале, т.е. в виде арккосинуса, а также в виде арккотангенса:

;

 

Разность α – β заключена в правой полуокружности:

Следовательно, она может быть представлена в виде арксинуса, а также в виде арктангенса:

;

Так как значение всякой аркфункции от положительного аргумента заключено в интервале (0; π/2) то сумму двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арккотангенса, а разность двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арктангенса.

Ниже приведены образцы соответствующих преобразований.

1.    Преобразуем в арккосинус , где  и

Имеем:

Откуда

           

2.    Аналогично

, где 0 < x < 1, 0 < y < 1

, где 0 < x < 1, 0 < y < 1

Формулы сложения аркфункций от произвольных аргументов.

1.    Выразить сумму через арксинус

По определению арксинуса

        и          ,

откуда

              

Для дуги γ возможны следующие три случая:

Случай 1:

Если числа x и y разных знаков или хотя бы одно из них равно нулю, то имеет место случай 1.

            В самом деле, при и , имеем:

            ,         и          ,

откуда

           

При x > 0, y > 0 для дуги γ имеет место одна из следующих двух систем неравенств:

а)                 б)

Необходимым и достаточным признаком, позволяющим отличить один от другого случаи а) и б), является выполнение неравенства:

 в случае а)  и   в случае  б)

В самом деле, взаимно исключающие друг друга соотношения а) и б) влекут за собой взаимно исключающие следствия  и (соответственно), а потому эти следствия служат необходимыми и достаточными признаками наличия данных соотношений.

Вычислив , получим:

При x > 0, y > 0 наличие случая 1 означает выполнения неравенства а) т.е. или

Откуда

             и, следовательно, 

Наличие случая 1 при x < 0, y < 0 означает выполнение неравенств

            ;

но тогда для положительных аргументов –x и –y имеет место случай 1, а потому

             или 

Случай 2.

            В этом случае x > 0, y > 0, т.е. выполняется неравенство б); из условия получим 

Случай 3.

            Этот случай имеет место при x < 0, y < 0, и

Изменив знаки на противоположные придем к предыдущему случаю:

           

откуда  

            Дуги γ и  имеют одинаковый синус, но (по определению арксинуса) , следовательно в случае 1  ;

в случае 2   и в случае 3  .

Итак, имеем окончательно:

                                                 ,  или 

               ; x > 0, y > 0, и      (1)

                                                ; x < 0, y < 0, и

Пример:

;        

2. Заменив в (1) x на –x получим:

                                                 ,  или 

               ; x > 0, y > 0, и      (2)

                                                ; x < 0, y < 0, и

3. Выразить сумму через арккосинус

          и         

имеем

           

Возможны следующие два случая.

Случай 1:  если  , то

Приняв во внимание, что обе дуги и расположены в промежутке [0;π] и что в этом промежутке косинус убывает, получим

и следовательно,  ,  откуда 

Случай 2: . Если , то

,

откуда при помощи рассуждений, аналогичных предыдущим, получим . Из сопоставления результатов следует, что случай 1 имеет место, если , а случай 2, если

.

            Из равенства   следует, что дуги

 и   имеют одинаковый косинус.

            В случае 1  , в случае 2  , следовательно,

             

                                                ,                          (3)

4. Аналогично

             

                                    ,                          (4)

 

пример:

5.

                                                xy < 1

                   ; x > 1, xy > 1                                                (5)

                                                ; x < 0, xy > 1

При xy=1 не имеет смысла

6.

                                               

            xy > -1

                   ; x > 0, xy < -1                                   (6)

                                                ; x < 0, xy < -1

7.

                                   

                 ;                                           (7)

                                    ;

8.

                                                                     (8)

                                   

9.

                                    ;

                  ; x > 1                                                            (9)

                                    ; x < -1

10.                                                                        (10)

                                                                                          (11)

                 , если                                  (12)

                                    , если