Статья: Деление произвольно заданного угла на 3 равновеликие части. Трисекция угла
Раздел: Рефераты по математике
Тип: статья
Деление произвольно заданного угла на 3 равновеликие части. Трисекция угла
Россия. г. Пенза
Е. И. Терёшкин.
Возьмем прямой угол BAD (чертеж1) достроим его да
квадрата ABCD, примем сторону квадрата за 1. Продолжим стороны BC и DC до
величины равной . Поставим точки M и N. Соединим
точки M и N с точкой A и наш прямой угол BAD разделен на 3 равновеликие части
т.е.
Чертеж 1.
Чертеж 2.
Но чтобы делить другие углы надо найти некоторую закономерность. Из точки C радиусом CM опишем окружность.
.
.
.
.
.
По теореме Пифагора находим . Из точки
радиусом
опишем окружность. Из точки
через
точку
проводим
линию до пересечения с большой дугой и ставим точку
.
,
.
.
- диаметры большого круга.
Проводим линию
, она пересекает малый круг в
точке
. Из
точки
,
через точку
проводим
линию до пересечения с большой дугой, ставим точку
. Соединяем точки
и
.
.
.
Рассмотрим треугольник чертеж 2.
. По теореме косинусов
. Проведем
линию
до
пересечения с
.
По теореме Пифагора Из точки
проводим линию
.
подобен
, значит
Рассмотрим , т.к. этот угол вписанный и
опирается на диаметр, а
в этом треугольнике будет средняя
линия, а значит
По теореме косинусов
, значит
но
, значит линия
проходит
через точку
,
т.е. через центр квадрата.
Далее чертим две пересекающиеся прямые, чтобы верхний и
нижний вертикальные углы были тупыми (чертеж 3) и острыми (чертеж 4). В местах
пересечения ставим точки . Из точек
любым радиусом
описываем окружность.
Чертеж 3. Чертеж 4.
Там где стороны верхнего тупого угла (чертеж 3) и острого
( чертеж 4) пересекаются с дугой окружности ставим точки M и N. Проводим
биссектрисы обоих тупых углов ( чертеж 3) и острых углов ( чертеж 4). Там где
биссектрисы пересекаются с окружностями ставим точки и
. Из точек
радиусом
описываем окружности. Там
где биссектрисы пересекаются с нижней точкой окружности ставим точки F.
Соединяем точки N с точками F. В местах пересечений линий NF с малой
окружностью ставим точки Е. Из точек
через точки Е проводим линии до
пересечения с большой дугой и ставим точки
. Соединяем точки М с точками
. В местах
пересечений линий М
и
F ставим точки О. От точек О в
сторону точек F по биссектрисам откладываем расстояние СО. Получаем точки А. Из
точек А // МС проводим линии до пересечения с продолжениями линий CN и ставим
точки В. Из точек А // ВС проводим линии до пересечения с продолжениями линий
МС и ставим точки D. Соединяем точки М с точками А и точки N с точками А.
Если требуется
разделить начальные углы MCN на три равновеликие части, то из точек С направляя
вверх проводим линии параллельные AM и AN.
Теперь в местах пересечения АМ и ВС ставим точки Р, а в
местах пересечения AN и СD ставим точки Q. Соединяем точки М с точками N. В
местах пересечения хорды MN с биссектрисой А ставим точку
. Треугольники АМ
и А
N равны по двум
катетам. Треугольники АРС и АСQ равны, т.к.
а АС – общая. Следовательно в
обоих чертежах РС=СQ, а ВР=QD и АР=АQ. Далее вынесем оба наших ромба АВСD в
отдельные чертежи.
Чертеж 5.
На чертеж 5 (а, б) вынесены ромбы АВСD с тупыми и острыми углами как и на чертежах 3 и 4. Только вместо букв Р и Q применим буквы М и N. Из доказанного ранее известно, что это ромбы, т.е. АВ=ВС=СD=АD, ВМ=ND, и АМ=АN.
Из точек А, радиусом АВ проводим дуги ВD, Из точек М, радиусом ВМ проводим дуги ВF до пересечения с дугами ВD. Из точек N радиусом DN проводим дуги DЕ до пересечения с дугами ВD. Соединяем точки Е с точками N, а точки F с точками М. ВМ=МF=EN=DN. Соединяем точки А с точками Е и F. Проводим хорды BF и ЕD,
Фигуры АВМF состоят из двух равнобедренных треугольников АВF и ВМF имеющих общее основание BF. Значит линии АМ делят эти фигуры на два равных треугольника АВМ и АМF, треугольники равны по трем сторонам.
Фигуры АЕND состоят из двух равнобедренных треугольников АЕD и ЕND, имеющих общее основание ЕD. Значит линии АN делят эти фигуры на два равных треугольника АЕN и АND, треугольники равны по трем сторонам.
Треугольники АВМ равны треугольникам AND по трем
сторонам, значит и треугольники АМF равны треугольникам АЕN. Следовательно в
обоих чертежах , а
и фигуры АВМF равны фигурам AEND
каждая в своем чертеже. Но точки Е на линиях АМ могут находиться, а могут и не
находиться и точки F на линиях АN могут находиться, а могут и не находиться.
Рассмотрим на обоих чертежах по два четырехугольника:
ромбы АВСD и фигуры АЕND. Сумма углов у обоих одинакова. а
значит
или
В обоих чертежах равны фигурам АЕND.
.
В результате получается:
или
Рассмотрим в обоих чертежах фигуры АВМF и ромбы АВСD.
или
следовательно
или Но где находятся точки Е и F пока
не известно.
Чертеж 6.
Чертеж 7.
На чертежах 6 (а, б) и 7 (а, б) указанны возможные варианты расположения точек Е и F относительно угла МАN.
Так как углы МАN симметричны относительно биссектрис
ромбов АС, потому что, а
, значит точки Е и F если и не
находятся на линиях АМ и АN, то находятся на одинаковом расстоянии от этих
линий. Иными словами
и
, если таковые углы существуют, то
эти углы равны между собой. Если
меньше
то
больше
на 2
И наоборот если
больше
то
меньше
на 2
На чертеже 6 (а, б) рассмотрим (вместе равны фигуре АЕND) и ромб
АВСD.
или
На чертеже 7 (а, б) рассмотрим и ромб АВСD.
Получится, что
Но и
могут быть равны каким-либо
углам, если
.
Следовательно, наши углы NAF и EAM = 0, и точка Е
находится на линии АМ, а точка F находится на линии AN и .
Угол больше развернутого этот способ не делит на три равновеликие части. Значит, его надо разделить пополам, любую из половинок разделить на три части и взять 2/3. Это и будет 1/3 делимого угла.