Курсовая работа: Ж/б каркасное 3-этажное здание торгового центра в г. Лабинске

Название: Ж/б каркасное 3-этажное здание торгового центра в г. Лабинске
Раздел: Рефераты по строительству
Тип: курсовая работа    

Федеральное агентство по образованию

ГОУВПО Кубанский государственный технологический университет

Кафедра строительных конструкций и гидротехнических сооружений

Курсовая работа

по дисциплине «Конструкции сейсмостойких зданий и сооружений»

на тему: «Ж/б каркасное 3-хэтажное здание торгового центра в г. Лабинске»

Краснодар 2008г.

Реферат

Данная курсовая работа дает представление об основах проектирования сейсмостойких сил железобетонных конструкций. В ходе выполнения курсовой работы, студент самостоятельно приобретает навыки определения сейсмических нагрузок на здания и сооружения с последующей оценкой сейсмостойкости, подбирать материал, компоновать сечения в целях его экономичности и рациональности.

Представленная пояснительная записка к курсовой работе на тему:

 «Ж/б каркасное 3-хэтажное здание торгового центра в г. Лабинске» имеет в объеме 32 листов. В ней представлены расчеты сейсмостойкости конструктивного решения несущих конструкций проектируемого здания – железобетонного каркаса.

Пояснительная записка иллюстрирована необходимыми пояснениями и рисунками, а также схемами ко всем расчетам. В ней также отражены антисейсмические мероприятия.

Ил. 8. Табл.8. Библиогр. 12.

 К пояснительной записке прилагается графическая часть – 1 лист


Содержание

Введение

1. Компоновка конструктивного решения здания

2. Определение сейсмичности строительной площадки и сбор нагрузок

 2.1 Сбор нагрузок

3 Определение периода собственных колебаний и форм колебаний

 3.1 Период собственных колебаний

 3.2 Формы собственных колебаний здания

 3.3 Оценка влияния продольных сил в сечении колонн на динамические характеристики каркаса

 3.4 Усилия в сечениях элементов рамы от сейсмической нагрузки

4 Определение сейсмических нагрузок и усилий от них

5 Определение усилий в несущих конструкциях от эксплуатационных нагрузок

6 Проверка общей устойчивости здания и прочности отдельных конструкций с учетом сейсмических нагрузок

 6.1 Подбор площади сечения арматуры средней колонны 1-го этажа

 6.2 Проверка прочности сечений, наклонных к продольной оси колонн

7 Антисейсмические мероприятия

Список литературы


Введение

В связи с увеличением частоты природных катаклизмов, а именно землетрясений возникла проблема сейсмоустойчивости зданий и сооружений, построенных без учета сейсмических воздействий, что в случае данных природных катастроф наносит материальный ущерб. Принимая во внимание всё это в районах подверженных сейсмическим воздействиям силой 7 и более баллов, возникла необходимость возведения зданий и сооружений, способных выдерживать сейсмические воздействия.

При разработке проектов зданий и сооружений выбор конструктивных решений производят исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, достигаемых за счет внедрения эффективных строительных материалов и конструкций, снижения массы конструкций и т.п. Принятые конструктивные схемы должны обеспечивать необходимую прочность, устойчивость; элементы сборных конструкций должны отвечать условиям механизированного изготовления на специальных предприятиях.

При проектировании гражданских зданий необходимо стремиться к наиболее простой форме в плане и избегать перепадов высот. При проектировании часто выбирают объемно-планировочные и конструктивные решения, так как они обеспечивают максимальную унификацию и сокращение числа типоразмеров и марок конструкций.

Увеличение объема капитального строительства при одновременном расширении области применения бетона и железобетона требует всемерного облегчения конструкций и, следовательно, постоянного совершенствования методов их расчета и конструирования


1 Компоновка конструктивного решения здания

По рекомендациям п.1.2 [10] приняты: симметричная конструктивная схема (см. рис. 1.1) с равномерным распределением жесткостей конструкций и масс; конструкции из легкого бетона на пористых заполнителях, обеспечивающие наименьшие значения сейсмических сил; условия работы конструкций с целесообразным перераспределением усилий вследствие использования неупругих деформаций бетона и арматуры при сохранении общей устойчивости здания. Участки колонн, примыкающие к жестким узлам рамы, армируют замкнутой поперечной арматурой, устанавливаемой по расчету, но не реже, чем через 100 мм. Под колонны проектируем сплошную фундаментную плиту.

Здание проектируется каркасное.

Размеры здания:

- ширина – 36,0м;

- длина – 36,0м;

Несущим является железобетонный каркас.

Фундаменты – сплошная монолитная фундаментная плита;

Перекрытия – монолитные железобетонные плиты толщиной 100мм;

Колонны – сечение 400х400мм, высотой 3000мм;

Ригеля – главная балка: - высота 750мм;

 - ширина 300 мм.

 – второстепенная балка: - высота 300 мм;

 - ширина 200мм.

Сетка колонн 9х9м;

Ограждающие конструкции - самонесущие кирпичные стены;

Перемычки – сборные железобетонные.

Перегородки – кирпичные.

Кровля - плоско-совмещенная с покрытием рубероидным ковром.

Лестницы – из сборных железобетонных маршей и площадок.


2 Определение сейсмичности строительной площадки и сбор нагрузок

Требуется рассчитать конструкции жилого здания, при его привязке к площадке строительства. Согласно СНиП II-7-81* (Строительство в сейсмических районах) в разделе Общее сейсмическое районирование территории Российской Федерации ОСР-97” (Список населенных пунктов) по карте ОСР-97-В-5% сейсмичность района г. Лабинск составляет 8 баллов (Карта В - объекты повышенной ответственности и особо ответственные объекты. Решение о выборе карты при проектировании конкретного объекта принимается заказчиком по представлению генерального проектировщика, за исключением случаев, оговоренных в других нормативных документах).

Определение сейсмичности площадки строительства производим на основании сейсмического микрорайонирования для III категории групп по сейсмическим свойствам, грунты которых являются: пески гравелистые, крупные и средней крупности плотные и средней плотности маловлажные и влажные; пески мелкие и пылеватые плотные и средней плотности маловлажные; глинистые грунты с показателем консистенции IL  0,5 при коэффициенте пористости е < 0,9 для глин и суглинков и е < 0,7 - для супесей. Сейсмичность площадки строительства при сейсмичности района 8 баллов, составляет 9 баллов. Согласно выше перечисленному значения коэффициента динамичности bi в зависимости от расчетного периода собственных колебаний Тi здания или сооружения по i-му тону при определении сейсмических нагрузок следует принимать по формулам (1).

Для грунтов III категорий по сейсмическим свойствам

при                      Тi £ 0,1 с            bi = 1 + 1,5Тi

при                      0,1 с < Тi < 0,8 с                                                 bi = 2,5         (1)

при                      Тi ³ 0,8 с            bi = 2,5 (0,8/ Тi)0,5

Во всех случаях значения bi должны приниматься не менее 0,8.


2.1 Сбор нагрузок

Сбор нагрузок производим на 1 м2 покрытия здания и перекрытия.

Конструктивное решение пола принимаем одинаковым для всех этажей.

Сбор нагрузок производим в табличной форме и представлен в таблице 2.1;2.2

 

Таблица 2.1 Нагрузка на 1м2 покрытия

Вид нагрузки

Нормативная нагрузка, Н/м2

Коэффициент надёжности по нагрузке

Расчётная нагрузка, Н/м2

Постоянная:

 

 

 

Собственный вес плиты δ=100мм

(ρ=2500кг/м3)

2500 1,1 2750
Пароизоляция 1 слой пергамина 0,05 1,3 0,065

Утеплитель- керамзитобетон δ=80мм (ρ=800кг/м3)

640 1,3 832
Цементно-песчаная стяжка δ=20мм 360 1,3 390
4 слоя рубероида на мастике 0,2 1,3 0,26
слой гравия δ=10мм 0,2 1,3 0,26

Итого

3500

 

3973

Временная

 

 

 


Таблица 2.2 Нагрузка на 1м2 перекрытия

Вид нагрузки

Нормативная нагрузка, Н/м2

Коэффициент надёжности по нагрузке

Расчётная нагрузка, Н/м2

Постоянная нагрузка:

Собственный вес плиты δ=100мм

(ρ=2500кг/м3)

2500 1,1 2750

Собственный вес Цементно-песчаного раствора δ=20мм (ρ=1800кг/м3)

360 1,3 390

Собственный вес

керамических плиток, δ=15мм (ρ=1800кг/м3)

270 1,1 297

Итого

3130

3437

Временная нагрузка:

4000 1,2 4800

Кратковременная (30%)

Длительная (70%)

1200

2800

1,2

1,2

1440

3360

Полная нагрузка:

Постоянная и длительная

Кратковременная

7130

5930

1200

8237

6797

1440


3.Определение периода собственных колебаний и форм колебаний

 

3.1 Для определения периода собственных колебаний и форм колебаний необходимо вычислить динамические характеристики пятиэтажной рамы поперечника здания

Принимаем колонны сечением 400х400мм, тогда

Ригель принимаем с размерами:

b=300мм; h=750мм;

тогда

Расчетная длина ригеля- 9200 мм; колонн - 3500 мм;

Для конструкций зданий в данном районе применён легкий бетон класса В25 с использованием мелкого плотного заполнителя, плотность бетона 1600кг/м3 и начальном модуле упругости Еb=16500МПа.

Погонная жесткость элементов рамы будет:

 для ригеля - (3.1)

для колонн -

 Рисунок 3.1- К расчету на сейсмические нагрузки

Сила, которая характеризует сдвиговую жесткость многоэтажной рамы:

 , (3.2)

где Si – сумма погонных жесткостей стоек этажа;

ri – сумма погонных жесткостей ригелей этажей;

l – высота этажа.

Суммарная погонная жесткость:

двух ригелей:

трёх колонн:

тогда

Расчетная высота здания, по формуле:

 (3.3), где

Н0=10,5– расстояние от обреза фундамента до ригеля верхнего этажа (плиты покрытия);

n=3 – число этажей; подставив эти значения в формулу получим:

Определим ярусную нагрузку на уровне междуэтажного перекрытия типового этажа.

от веса перекрытия (подсчет сосредоточенных нагрузок на уровне междуэтажных перекрытий с учетом коэффициентов сочетаний:0,9;0,8 и 0,5):

где 36 м – ширина здания;

9 м – шаг колонн;

от веса колонн длиной, равной высоте этажа:

;

от веса участков стен:

 ;

Итого G1…G3= 486,39кН ;

Перегородки в расчете не учтены.

Ярусная масса определяется по формуле:

 m1…m3 = 585,31/9,8= 49,63 кН∙с2∙м ;

Принимая приближенно ярусную массу покрытия m4≈m3 = 49,63 кН∙с2∙м , находим периоды трёх тонов свободных горизонтальных колебаний рамной системы и коэффициенты динамичности и вносим их в таблицу 3.1.

 (3.5)

где i- 1,2,3 типа свободных колебаний;

К= 55300,05 кН;

Н=12,6 м;

l=3,5 м;

βi= 1,5/Тi – для грунтов III категории (3.6);


Таблица 3.1- К определению коэффициентов динамичности

 

Тип колебаний

 

Периоды колебаний по формуле

Коэффициент динамичности

По формуле

Принят

1

=1,01>0,8

2

3

Определим ярусную нагрузку на уровне покрытия для участка длины здания, равному продольному шагу колонн 6 м:

- от веса совмещенной кровли: 3973∙36∙9∙0,9 = 1158,5кН;

- от веса снегового покрова: 0,5∙0,95∙9∙36∙1,1 = 169,29кН;

- от веса колонн: 25,25/2 = 12,63 кН;

- от веса участков стен: 247,42/2 = 123,71 кН.

G5=1158,5+169,29+12,63+123,71 = 1464,13 кН

3.2 Формы собственных колебаний здания

Величина  - смещение точек динамической системы отвечает уравнению собственных (свободных) колебаний. В практических расчетах уравнение  аппроксимируют в виде тригонометрических полиномов. Для определения коэффициента формы колебаний в формулу (2.3) подставляют не абсолютные смещения точек, а лишь их отношения. Например, формы трех тонов свободных колебаний многоэтажных зданий: , (2.4)

где - безразмерная координата точки j.

Относительные координаты форм свободных колебаний даны в табл. 2.1 для трех ортонормированных функций.

Рис. 3.3- К динамическому расчету 4-этажного здания:

а – условная схема здания; б – расчетная схема при определении периодов и форм свободных колебаний горизонтальных колебаний; в – три ортонормированные функции, аппроксимирующие формы свободных колебаний.

3.3 Оценка влияния продольных сил в сечении колонн на динамические характеристики каркаса

Изгибная жесткость рамы:

Во =EbAL2/2=16500∙0,4 ∙0,4∙152/2 =2970∙105 кН∙м2, (3.8)

где L= 15 м- расстояние между осями крайних колонн.

Характеристика жесткости рамы при учете влияния продольных сил в сечении колонн, по формуле  . (3.9)

Следовательно, учитывать влияние продольных сил в сечении колонн на динамические характеристики рамного каркаса не требуется.


3.4 Усилия в сечениях элементов рамы от сейсмической нагрузки

Так как расчетные сейсмические нагрузки по п. 2.3 [10] принимаются, действующими в горизонтальном направлении, вертикальная составляющая сейсмических сил не учитывается. Так же не учитывают по п. 2.4 [10] вертикальную сейсмическую нагрузку для рам пролетом менее 24 м. Расчетные значения поперечных сил и изгибающих моментов в сечениях элементов рамы по п. 2.10 [10] следует определить по формулам:

 и ;

в которых Qi и Miусилия в рассматриваемом сечении, вызываемые сейсмическими нагрузками, соответствующими форме колебаний i.

В приближенном расчете многоэтажных рам на горизонтальные нагрузки учитывают уменьшение жесткости крайних колонн, так как они имеют меньшую степень защемления в узлах, чем средние колонны.

Погонные жесткости элементов рамы 1-го этажа:

ригеля

где

колонны 2-го этажа

где

колонны 1-го этажа  

 Табличный коэффициент

При отношении погонных жесткостей ригелей и колонн  

согласно табл. XV.1 [1], общая жесткость колонн рамы (принимая за единицу жесткость средней колонны):

на 1-ом этаже ∑i = 1+2∙0,9 = 2,8; на других этажах ∑i = 1+2∙(0,54+0,54)-2 = 1,16;

Поперечные силы в сечениях средних колонн рамы:

на 1-м этаже 2,8=(242,44+39,30+68,58)/2,8=125,11;

 со 2-го по 5-й этаж 1,16= (86,59+14,04+24,49)/1,16=107,86;

Изгибающие моменты в сечениях средних колонн:

на 1-м этаже в сечении под ригелем рамы М1=2∙Q1l/3;

в сечении по с 2-го по 4-й этаж Мk=Q1l/2; где l- расчетная длина колонн, равная высоте этажа.

Поперечные силы (кН) и изгибающие моменты (кН∙м) в сечениях средних колонн рамы подсчитаны в таблице 4.1 для трёх форм колебаний.


4 Определение сейсмических нагрузок и усилий от них

Коэффициенты форм колебаний ηik для трех тонов подсчитаны в табл. 3.2 с использованием относительных координат форм свободных колебаний, приведенных в табл. 4.1. по формуле:

; (4.1)

где- смещение точек здания при собственных колебаниях по -му тону в рассматриваемой точке k и во всех точках j расположения ярусных нагрузок .Расчетную сейсмическую нагрузку  в выбранном направлении действия, приложенную к точке k и соответствующую -му тону свободных, т.е. собственных колебаний здания, определяют по формуле п. 2.5[10]: , (4.2)

 

Таблица 4.1

Этажи

кН

кН

кН

1 2 3 4 5 6 7 8
1 0,241 1125,09 0,3698 0,1368 416,10 153,89 0,463
2 0,483 1125,09 0,6872 0,4723 773,20 531,36 0,860
3 0,724 1125,09 0,9072 0,8230 1020,65 925,90 1,135
4 1,000 772,45 1,0000 1,0000 772,45 772,45 1,251
Итого 2982,39 2383,60
1 0,241 1125,09 0,9072 0,8230 1020,65 925,90 0,302
2 0,483 1125,09 0,7634 0,5828 858,91 655,70 0,254
3 0,724 1125,09 -0,2647 0,0701 -297,84 78,85 -0,088
4 1,000 772,45 -1,0000 1,0000 -772,45 772,45 -0,333
Итого 809,27 2432,89
1 0,241 1125,09 0,2361 0,0557 265,65 62,72 0,111
2 0,483 1125,09 -0,7761 0,6023 -873,16 677,64 -0,364
3 0,724 1125,09 0,7434 0,5526 836,35 621,71 0,349
4 1,000 772,45 1,0000 1,0000 772,44 772,44 0,469
Итого 1001,28 2134,52

где - коэффициент, учитывающий допускаемые повреждения зданий и принимаемый по табл. 3 [10],  - для зданий и сооружений, в конструкциях которых могут быть допущены остаточные деформации и повреждения, затрудняющие нормальную эксплуатацию, при обеспечении безопасности людей и сохранности оборудования, возводимые с железобетонным каркасом с диафрагмами или связями; - коэффициент, учитывающий характеристики конструкций и принимаемый по табл. 6 [10],  для каркасных зданий, стеновое заполнение которых не оказывает влияния на их деформативность; - коэффициент, учитывающий расчетную сейсмичность площадки строительства и определяемый по п. 2.5 [10], при сейсмичности 9 баллов; - коэффициент динамичности, определяемый по п. 2.6* [10]; - коэффициент, зависящий от формы деформации здания при свободных колебаниях по -му тону и от места расположения нагрузки k и определяемый по п.2.7 [10]: , (2.3)

где- смещение точек здания при собственных колебаниях по -му тону в рассматриваемой точке k и во всех точках j расположения ярусных нагрузок .

 

Таблица 4.2

 

Э

т

а

ж

и

,

кН

Первая форма колебаний с

Вторая форма колебаний с

Третья форма колебаний с

 

 

 

 

1 2 3 4 5 6 7 8 9

 

 

4 1,000 772,45 1,251 62,793 -0,333 -37,51371 0,469 52,90263

 

 

3 0,724 1125,09 1,135 82,97 -0,088 -14,46462 0,349 57,27951

 

 

2 0,483 1125,09 0,860 62,854 0,254 41,712734 -0,364 -59,8004

 

 

1 0,241 1125,09 0,463 33,825 0,302 49,567386 0,111 18,19347

 

Этаж k Первая форма колебаний Вторая ф࠾рма к࠾࠻еба࠽ий Третья форма колебаний

S1k

∑S1k

Qk

Мk

S2k

∑S2k

Qk

Мk

S3k

∑S3k

Qk

Мk

1 2 3 4 5 6 7 8 9 10 11 12 13
4 62,79 62,79 54,13 94,73 -37,51 -37,51 -32,34 -56,59 52,90 52,90 45,61 79,81
3 82,97 145,76 125,66 219,90 -14,46 -51,98 -44,81 -78,42 57,28 110,18 94,98 166,22
2 62,85 208,62 179,84 314,72 41,71 -10,27 -8,85 -15,49 -59,80 50,38 43,43 76,01
1 33,83 242,44 86,59 101,02 49,57 39,30 14,04 16,38 18,19 68,58 24,49 28,57
M= 202,04 M= 32,75 M= 160,01

Находим значение сейсмических сил по формуле:

  (4.3)


 

4.1 – К расчету поперечной рамы на горизонтальную нагрузку

Ярусные поперечные силы:

4-й этаж

3-й этаж

2-й этаж

1-й этаж

Изгибающие моменты в стойках:

4-й этаж  

3-й этаж

2-й этаж

1-й этаж

 


Изгибающие моменты в ригелях:

 
5 Определение усилий в несущих конструкциях от эксплуатационных нагрузок

Эксплуатационная нагрузка:

Расчетная нагрузка на 1 м/п:

по приложению 8.2.17 [4], при n=1,46

От нагрузки на всю раму -Рэквэкспл∙ℓпл

Мас= 0,0147;

Мв1в2= 0,1176;

Множитель = -Рэкв∙ℓ2

 

Таблица 5.1 – К определению моментов и поперечных сил

ССхема загружения

Ма

кН∙м

Мв1

кН∙м

Мв2

кН∙м

Мс

кН∙м

МА

кН∙м

МВ

кН∙м

Q12

кН

Q21

кН

Q23

кН

 58,71 кН/м

 7,5 м 7,5 м

0,0147 0,1176 0,1176 0,0147 91,68 91,68 1579,84 1722,56 1722,56
-48,55 -388,37 -388,37 -48,55


6 Проверка общей устойчивости здания и прочности отдельных конструкций с учетом сейсмических нагрузок

Для проверки принимаем среднюю колонну.

Так как изгибающие моменты в верхнем сечении средней колонны равны 0, то значение суммарного момента от сейсмической горизонтальной нагрузки и от вертикальной нагрузки будет равен только значению момента от сейсмической нагрузки:

234,04+0=234,04кНм

То же и с поперечными силами:

58,71+0=58,71кН

Продольная сила в сечении колонны 1-го этажа (кН) при особом сочетании нагрузок:

от веса совмещенной кровли: 3,97∙6∙7,5∙0,9=160,78 кН;

от веса снегового покрова: 1∙0,95∙7,5∙6=42,75 кН;

от веса перекрытия: 6,74∙7,5∙6∙0,9∙3=818,91 кН;

от веса колонны: 0,9∙0,95∙0,4∙0,4∙1,1∙16∙3,5=7,22 кН;

Итого: N1=1164,53 кН.

В том числе длительно действующая нагрузка N1l=232,91 кН.

6.1 Подбор площади сечения арматуры средней колонны 1-го этажа

Бетон: класса В25 с14,5 МПа; 1,05 МПа; 16500 МПа

Арматура: класса А-III с 365 МПа; МПа;

Сечение колонны 400х400 мм с 3,5 м и мм4

Усилия М=234,04 кН; Q=90,35 кН; N1=1164,53 кН; N1l=232,91 кН.

Эксцентриситет продольной силы:

Относительный эксцентриситет: мм.

 должен быть не менее  (6.1)

Также учитываем особые коэффициенты условий работы при расчете на прочность нормальных сечений элементов из тяжелого бетона с арматурой класса АIII

Коэффициент, учитывающий влияние длительности действия нагрузки:

 (6.2)

учитывая, что , получаем формулу

Выражение для критической силы имеет вид:

 (6.3)

где  (6.4)

  (6.5)

задаемся

К расчету примем

Коэффициент, учитывающий влияние прогиба на значение эксцентриситета продольной силы:

 (6.6)

Расстояние от направления действия или до тяжести сечения сжатой арматуры:

 

При условии, что Аs=As’, высота сжатой зоны

 (6.7)

Относительная высота сжатой зоны .

Граничное значение относительной высоты сжатой зоны бетона

 (6.8)

где

 учитывая, коэффициент 0,85 .

В случае .

 (6.9)

Площадь арматуры  назначаем не конструктивно.

Принимаем 3Ø36 АIII c As=30,52 см2.


6.2 Проверка прочности сечений, наклонных к продольной оси колонн

При поперечной силе и при продольной силе и при особом коэффициенте условия работы для многоэтажных зданий.

Коэффициент, учитывающий благоприятное влияние продольной сжимающей силы на прочность наклонного сечения:  (6.10)

, следовательно, в расчете учитывается только .

При для тяжелого бетона находим:

 (6.11)

При поперечная арматура не требуется по расчету. Принимаем из условий свариваемости Ø8 АIII с шагом 100мм и 200мм.

Находим  (6.12)

где

Тогда при

(213,35-183,71)=29,64 кН<110,224 кН и конструктивно заданном максимально допустимом шаге поперечных стержней S, площадь сечения хомутов находят по формуле:

Принимаем для Ø36АIII поперечную арматуру из условий свариваемости Ø8AIII

Тогда

Было принято Ø8AIII, и так как в сечении 4 стержня Ø8AIII, то

Рисунок 6.1-Сечение колонны

Проверка общей устойчивости здания

   

- устойчивость обеспечивается,

где п- количество этажей.

Определим прогиб здания

 

Находим эквивалентную силу Р:

=>

 

 - для каркасных ж/б зданий с ограждающими конструкциями из кирпича, опирающимися поэтажно.


7 Антисейсмические мероприятия

Лестничные клетки в торцах здания воспринимают горизонтальную сейсмическую нагрузку, а так же диафрагма жесткости по середине здания толщиной 160мм, железобетонная, жестко связанная с колоннами (см. чертеж).

Жесткие узлы железобетонного каркаса здания усилены применением сварных сеток и замкнутых хомутов. На стыке колонн, применяющиеся к жестким узлам рамы на расстоянии, равном полуторной высоты сечения колонн, армируются поперечной арматурой (хомутами) с шагом не более 100 мм, а для рамных систем с несущими диафрагмами - не реже чем через 200мм.

Жесткость здания в поперечном направлении обеспечивается рамами (колонны и монолитная плита), лестничными клетками в торцах здания и диафрагмой жесткости в середине здания.

В продольном направлении жесткость обеспечивается продольными рамами (колонны и монолитная плита).

В соответствии с рекомендациями СНиП диафрагма жесткости и лестничные клетки расположены симметрично относительно центра здания.

В качестве ограждающих стеновых конструкций применяются легки стеновые панели из керамзитобетона δ=350мм.

Наружные стеновые панели и внутренние перегородки не должны препятствовать деформации каркаса. Между поверхностями стен и колонн каркаса должен предусматриваться зазор не менее 20 мм. По всей длине стены в уровне плит покрытия должен устраиваться антисейсмические пояса, соединяющиеся с каркасом здания.

В местах пересечения торцовых и поперечных стен с продольными стенами должны устраиваться антисейсмические швы на всю высоту стен.

Расстояние между хомутами стеновых элементов (колонн) в местах стыкования рабочей арматуры внахлестку.

Кладка самонесущих стен в каркасных зданиях должна быть I или II категории, иметь гибкие связи с каркасом, не препятствующие горизонтальным смещениям каркаса вдоль стен.

Между поверхностями стен и колонн каркаса должен предусматриваться зазор не менее 20 мм. По всей длине стены в уровне плит покрытия и верха оконных проемов должны устраиваться антисейсмические пояса, соединенные с каркасом здания.

В местах пересечения торцовых и поперечных стен с продольными стенами должны устраиваться антисейсмические швы на всю высоту стен.

 Лестничные и лифтовые шахты каркасных зданий следует устраивать как встроенные конструкции с поэтажной разрезкой, не влияющие на жесткость каркаса, или как жесткое ядро, воспринимающее сейсмическую нагрузку.

Для каркасных зданий высотой до 5 этажей при расчетной сейсмичности 7 и 8 баллов допускается устраивать лестничные клетки и лифтовые шахты в пределах плана здания в виде конструкций, отделенных от каркаса здания. Устройство лестничных клеток в виде отдельно стоящих сооружений не допускается

В уровне перекрытий и покрытий должны устраиваться антисейсмические пояса по всем продольным и поперечным стенам, выполняемые из монолитного железобетона или сборными с замоноличиванием стыков и непрерывным армированием. Антисейсмические пояса верхнего этажа должны быть связаны с кладкой вертикальными выпусками арматуры.

В зданиях с монолитными железобетонными перекрытиями, заделанными по контуру в стены, антисейсмические пояса в уровне этих перекрытий допускается не устраивать.

 Антисейсмический пояс (с опорным участком перекрытия) должен устраиваться, как правило, на всю ширину стены; в наружных стенах толщиной 500 мм и более ширина пояса может быть меньше на 100-150 мм.

Высота пояса должна быть не менее 150 мм, марка бетона1 - не ниже 150.

Антисейсмические пояса должны иметь продольную арматуру 4d10 при расчетной сейсмичности 7-8 баллов и не менее 4 d12 - при 9 баллах.

 В сопряжениях стен в кладку должны укладываться арматурные сетки сечением продольной арматуры общей площадью не менее 1 см2, длиной 1,5 м через 700 мм по высоте при расчетной сейсмичности 7-8 баллов и через 500 мм - при 9 баллах.

Участки стен и столбы над чердачным перекрытием, имеющие высоту более 400 мм, должны быть армированы или усилены монолитными железобетонными включениями, заанкеренными в антисейсмический пояс.

1 В СНиП по проектированию бетонных и железобетонных конструкций марка бетона заменена на класс.

Рисунок 7.1 - Стык колонн с монолитным перекрытием


Список литературы

1.  Бойков В.Н., Сигалов Э.Е. Железобетонные конструкции. Общий курс, М., 1985.

2.  СНКК 22-301-2000. “Строительство в сейсмических районах Краснодарского края”

3.  СНКК 20-303-2002. “Нагрузки и воздействия. Ветровая и снеговая нагрузки. Краснодарский край”

4.  СНиП 31-01-2003. “Здания жилые многоквартирные” Госстрой М., 1985.

5.  СНиП 2.01.07-85*. “Нагрузки и воздействия” Госстрой М., 1985.

6.  СНКК 23-302-2000. Энергетическая эффективность жилых и общественных зданий. Нормативы по теплозащите зданий. Краснодарский край

7.   СНиП 2.03.01-84*. Бетонные и железобетонные конструкции. М., 1985.

8.  СНиП 2.02.01-83*. Основания зданий и сооружений. М., 1982.

9.  СНиП II-3-79*. Строительная теплотехника

10.     СНиП II-7-81*. Строительство в сейсмических районах. М., 2000.

11.     Бондаренко В.М., Судницын А.И. Расчет строительных конструкций. Железобетонные и каменные конструкции. М., 1984.

12.     Бондаренко В.М., Суворкин Д.Г. Железобетонные и каменные конструкции. М., 1987.

Проектирование четырехэтажной гостиницы в г. Краснодаре
Содержание Введение 1 Исходные данные 1.1 Место строительства 1.2 Расчетные данные 1.3 Геологические данные 1.4 Существующие подъездные пути 1.5 ...
5.2 Сбор нагрузок на каркас здания
Здание "П" образное в плане, размером 35.1 м х 21.9 м. Высота первого этажа 4.2 м, второго и последующих 3.6 м, количество этажей 4. Конструктивная схема здания рамно-связевый ...
Раздел: Рефераты по строительству
Тип: дипломная работа
Разработка 4-этажного оздоровительного комплекса "Звезда" в ...
Реферат Пояснительная записка содержит: 130 листов, 6 рисунков, 27 таблиц, 38 источников. Графическая часть - 11 листов чертежей. ПЛЯЖНЫЙ КОРПУС ...
Несущие конструкции - монолитный ж/бетонный каркас, состоящий из 8 колонн сечением 400х800 и горизонтальных поясов через каждые 5м.
Опорным закреплением балочных пролетных строений в сейсмических районах предъявляют следующие дополнительные требования: неподвижные опорные части должны обеспечить восприятие и ...
Раздел: Рефераты по строительству
Тип: дипломная работа
Одноэтажное каркасное производственное здание
Федеральное агентство по образованию ГОУВПО Кубанский государственный технологический университет Кафедра строительных конструкций и гидротехнических ...
При расчете зданий и сооружений (кроме гидротехнических сооружений) длиной или шириной более 30 м помимо сейсмической нагрузки необходимо учитывать крутящий момент относительно ...
Продольная сила в сечении средней колонны первого этажа (кН) при особом сочетании нагрузок:
Раздел: Рефераты по строительству
Тип: курсовая работа
Проектирование строительства завода цинкования мелкоразмерных ...
Содержание 1. Задание 2. Введение 3. Общие исходные данные 4. Функционально-технологические условия 5.Технико-экономическое обоснование принятого ...
Связи - это важные элементы каркаса, обеспечивающие неизменность пространственной системы каркаса и устойчивости его сжатых элементов; восприятия и передачи на фундамент некоторых ...
Система связи между колоннами обеспечивает во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, а также ...
Раздел: Рефераты по строительству
Тип: дипломная работа
Капитальный и текущий ремонты зданий
Содержание 1. Исходные данные для проектирования 2. Сравнение и выбор варианта конструктивного решения 2.1 Исходные данные 2.2 Решение задачи 3 ...
Размеры существующего здания в осях 38,6 и 13,1 м. Высота этажа 2,8 м. Перекрытие надстраиваемого этажа по металлическому каркасу может быть решено в двух вариантах:
В предварительно напряженных конструкциях, подлежащих расчету на особое сочетание нагрузок с учетом сейсмического воздействия, усилия, определяемые из условий прочности сечений ...
Раздел: Рефераты по строительству
Тип: дипломная работа