Контрольная работа: Решение задач по курсу теории вероятности и математической статистики

№ 1

 

Три стрелка делают по одному выстрелу по одной и той же цели. Вероятности поражения целей равны соответственно р1 = 0,9, р2 = 0,8, р3 = 0,7.

Найти вероятности того, что:

а) все три стрелка попадают в цель;

б) только один из них попадает в цель;

в) хотя бы один стрелок попадает в цель.

Обозначим события: А – все 3 стрелка попадают в цель; В – только один стрелок попадает в цель; С – хотя бы один стрелок попадает в цель.

Вероятности промахов равны соответственно: q1 = 0,1, q2 = 0,2, q3 = 0,3.

а) Р(А) = р1р2р3 = 0,9∙0,8∙0,7 = 0,504.

б) Р(В) = p1q2q3 + q1p2q3 + q1q2p3 = 0,9∙0,2∙0,3 + 0,1∙0,8∙0,3 + 0,1∙0,2∙0,7 = 0,092.

в) Событие – все три стрелка промахиваются. Тогда

Р(С) = 1 – Р() = 1 – 0,1∙0,2∙0,3 = 1 – 0,006 = 0,994.

№ 11

Вероятность наступления события в каждом из одинаковых независимых испытаний равна 0,02. Найти вероятность того, что в 150 испытаниях событие наступит ровно 5 раз

У нас n достаточно великó, р малó, λ = np = 150 ∙ 0,02 = 3 < 9, k = 5. Справедливо равенство Пуассона: . Таким образом,

 

№ 21

 

По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).

 хі

1 2 3 4 5

 рі

0,05 0,18 0,23 0,41 0,13

Последовательно получаем:

 

5

М(Х) = ∑ хірі = 0,05 + 2∙0,18 + 3∙0,23 + 4∙0,41 + 5∙0,13 = 3,39.

i=1

5

D(X) = ∑ xi²pi – M² = 0,05 + 2²∙0,18 + 3²∙0,23 + 4²∙0,41 + 5²∙0,13 – 3,39² = i=1

1,1579.

σ(Х) = √D(X) = √1,1579 = 1,076.


№ 31

 

Случайная величина Х задана интегральной функцией

а) дифференциальную функцию f(x) (плотность вероятности);

б) математическое ожидание и дисперсию величины х;

в) вероятность того, что X примет значение, принадлежащее интервалу

;

г) построить графики функций F(x) и f(x).

Последовательно получаем:

а)  ;

в) Р(a < x < b) = F(b) – F(a) Þ P= F(1) – F= – 0 = .

Графики функций поданы далее.

 

№ 41

Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α; β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 2; β = 13; а = 10; σ = 4.

Используем формулу Р(α < x < β) =

Имеем: Р(2 < x < 13) == Ф– Ф(–2).

Поскольку функция Лапласа есть нечетная, можем записать:

Ф– Ф(–2) = Ф+ Ф(2) = 0,2734 + 0,4772 = 0,7506.

 

№ 51

По данному статистическому распределению выборки

 хі

4 5,8 7,6 9,4 11,2 13 14,8 16,6

 mі

5 8 12 25 30 20 18 6

Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение.

Для решения задачи введём условную переменную

, где С – одно из значений хі, как правило, соответствующее наибольшему значению mі , а h – это шаг (у нас h = 1,8).

Пусть С = 11,2. Тогда .

Заполним таблицу:

xi

mi

xi´

 ximi

 (xi´)²mi

4 5 – 4 – 20 80
5,8 8 – 3 – 24 72
7,6 12 – 2 – 24 48
9,4 25 – 1 – 25 25
11,2 30 0 0 0
13 20 1 20 20
14,8 18 2 36 72
16,6 6 3 18 54
∑ = 124 ∑ = – 19 ∑ = 371

Используя таблицу, найдём ;

D(x´) = ∑(xi´)²mi – (xi´)² =  – (– 0,1532)² = 2,9685.

Теперь перейдем к фактическим значениям х и D(x):

_

x = x´h + C = – 0,1532∙1,8 + 11,2 = 10,9242; D(x) = D(x´)∙h² = 2,9685∙1,8² = 9,6178;

σ(x) = √D(x) = √9,6178 = 3,1013.

 

№ 61

По данной корреляционной таблице найти выборочное уравнение регрессии.


у х 6 9 12 15 18 21

ny

5 4 2 6
15 5 23 28
25 18 44 5 67
35 1 8 4 13
45 4 2 6

 nx

4 7 42 52 13 2 n = 120

Для упрощения расчетов введем условные переменные

u = , v = . Составим таблицу:

v u – 3 – 2 – 1 0 1 2

nv

nuvuv

– 2

4 6

2 4

6 32
– 1

5 2

23 1

28 33
0

18 0

44 0

5 0

67 0
1

1 –1

8 0

4 1

13 3
2

4 2

2 4

6 16

 nu

4 7 42 52 13 2 n = 120 ∑ = 84

Последовательно получаем:

;

;

;

;

σu² = – (u)² = 1,058 – (– 0,425)² = 0,878; σu = √0,878 = 0,937;

σv² = – (v)² = 0,742 – (– 0,125)² = 0,726; σv = √0,726 = 0,8521;

По таблице, приведённой выше, получаем ∑nuvuv = 84.

Находим выборочный коэффициент корреляции:

Далее последовательно находим:

x = u∙h1 + C1 = – 0,425∙3 + 15 = 13,725; y = v∙h2 + C2 = – 0,125∙10 + 25 = 23,75;

σx = σu∙h1 = 0,937∙3 = 2,811; σy = σv∙h2 = 0,8521∙10 = 8,521.

Уравнение регрессии в общем виде:  Таким образом,

 упрощая, окончательно получим искомое уравнение регрессии:

Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х.

1) при х = 12 по таблице имеем

по уравнению:

ух=12 = 2,457∙12 – 9,968 = 19,516; ε1 = 19,762 – 19,516 = 0,246;

2) при х = 18 по таблице имеем

по уравнению:

ух=18 = 2,457∙18 – 9,968 = 34,258; ε2 = 34,258 – 34,231 = 0,027.

Отмечаем хорошее совпадение эмпирических и теоретических данных.


Вариант 2

 

№ 2

Для сигнализации об аварии установлены 3 независимо работающие устройства. Вероятности их срабатывания равны соответственно р1 = 0,9, р2 = 0,95, р3 = 0,85. Найти вероятности срабатывания при аварии:

а) только одного устройства;

б только двух устройств;

в) всех трёх устройств.

Обозначим события: А – срабатывает только одно устройство; В – срабатывают 2 устройства; С – срабатывают все 3 устройства. Вероятности противоположных событий (не срабатывания) соответственно равны q1 = 0,1, q2 = 0,05, q3 = 0,15. Тогда

а) Р(А) = p1q2q3 + q1p2q3 + q1q2p3 = 0,9∙0,05 ∙0,15 + 0,1∙0,95∙0,15 + 0,1∙0,05∙0,85 = 0,02525.

б) Р(В) = p1p2q3 + p1q2p3 + q1p2p3 = 0,9∙0,95∙0,15 + 0,9∙0,05∙0,85 + 0,1∙0,95∙0,85 = 0,24725.

в) Р(С) = р1р2р3 = 0,9∙0,95∙0,85 = 0,72675.

№ 12

В партии из 1000 изделий имеется 10 дефектных. Найти вероятность того, что из взятых наудачу из этой партии 50 изделий ровно 3 окажутся дефектными.

По условию n = 50, k = 3. Поскольку р малó, n достаточно большое, в то же время nр = 0,5 < 9, справедлива формула Пуассона: .

Таким образом,

 

№ 22

По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).

 

хі

2

3 4 5 8

 рі

0,25 0,15 0,27 0,08 0,25

Последовательно получаем:

5

М(Х) = ∑ хірі = 2∙0,25 + 3∙0,15 + 4∙0,27 + 5∙0,08 + 8∙0,25 = 4,43.

i=1

5

D(X) = ∑ xi²pi – M² = 2²∙0,25 + 3²∙0,15 + 4²∙0,27 +5²∙0,08 + 8²∙0,25 – 4,43²  і=1

= 5,0451.

σ(Х) = √D(X) = √5,0451 = 2,246.


№ 32

Случайная величина Х задана интегральной функцией

а) дифференциальную функцию f(x) (плотность вероятности);

б) математическое ожидание и дисперсию величины х;

в) вероятность того, что X примет значение, принадлежащее интервалу

;

г) построить графики функций F(x) и f(x).

Последовательно получаем:

а)  ;

в) Р(a < x < b) = F(b) – F(a) Þ P= F(1) – F=

Графики функций приводятся далее.



№ 42

Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α; β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 5; β = 14; а = 9; σ = 5.

Используя формулу  имеем

Поскольку функция Лапласа есть нечетная, можем записать:

 

№ 52

 

По данному статистическому распределению выборки

 хі

7,6 8 8,4 8,8 9,2 9,6 10 10,4

 mі

6 8 16 50 30 15 7 5

Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение.

Для решения задачи введём условную переменную

где С – одно из значений хі , как правило, соответствующее наибольшему значению mі , а h – это шаг (у нас h = 0,4).

Пусть С = 8,8. Тогда

Заполним таблицу:

xi

mi

xi´

ximi

(xi´)²mi

7,6 6 – 3 – 18 54
8 8 – 2 – 16 32
8,4 16 – 1 – 16 16
8,8 50 0 0 0
9,2 30 1 30 30
9,6 15 2 30 60
10 7 3 21 63
10,4 5 4 20 80
∑ = 137 ∑ = 51 ∑ = 335

Используя таблицу, найдём

;

D(x´) = ∑(xi´)²mi – (xi´)² =  – 0,3723² = 2,3067.

Теперь перейдем к фактическим значениям х и D(x):

x = x´h + C = 0,3723∙0,4 + 8,8 = 8,9489; D(x) = D(x´)∙h² = 2,3067∙0,4² = 0,3961;

σ(x) = √D(x) = √0,3961 = 0,6075.

 

№ 62

По данной корреляционной таблице


у х 4 8 12 16 20 24

ny

10 2 5 7
20 6 8 4 18
30 8 46 10 64
40 5 20 4 29
50 3 14 2 5 22

nx

2 19 62 48 6 3 n = 140

найти выборочное уравнение регрессии.

Для упрощения расчетов введём условные переменные

 Составим таблицу.

v u

– 2 – 1 0 1 2 3

nv

nuvuv

– 2

2 4

5 2

7 18
– 1

6 1

8 0

4 –1

18 2
0

8 0

46 0

10 0

 

64 0
1

5 0

20 1

4 2

29 28
2

3 0

14 2

2 4

5 6

22 66

nu

2 19 62 48 6 3 n = 140 ∑ = 114

Последовательно получаем:

;

;

;

;

σu² = – (u)² = 0,9 – 0,329² = 0,792; σu = √0,792 = 0,89;

σv² = – (v)² = 1,164 – 0,293² = 1,079; σv = √1,079 = 1,0385;


По таблице, приведённой выше, получаем ∑nuvuv = 114.

Находим выборочный коэффициент корреляции:

Далее последовательно находим:

x = u∙h1 + C1 = 0,329∙4 + 12 = 13,314; y = v∙h2 + C2 =0,293∙10 + 30 = 32,929;

σx = σu∙h1 = 0,89∙4 = 3,56; σy = σv∙h2 = 1,0385∙10 = 10,385.

Уравнение регрессии в общем виде:  Таким образом,

 упрощая, окончательно получим искомое уравнение регрессии:

Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х.

1) при х = 12 по таблице имеем

по уравнению: ух=12 = 2,266∙12 + 2,752 = 29,944; ε1 = 30,484 – 29,944 = 0,54;

2) при х = 16 по таблице имеем

по уравнению: ух=16 = 2,266∙16 + 2,752 = 39,008; ε2 = 39,167 – 39,008 = 0,159.

Отмечаем хорошее совпадение эмпирических и теоретических данных.