Реферат: Математические предложения и методика их изучения

Министерство образования Республики Беларусь

«Гомельский государственный университет им. Ф. Скорины»

Математический факультет

Кафедра МПМ


Реферат

Математические предложения и методика их изучения

Исполнитель:

Студентка группы М-31

Селиканова А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент

Лебедева М.Т.

Гомель 2007


Введение

Процесс доказательства теорем и геометрии выражает связь единичных суждений (чертеж) и общих (использование общих свойств фигур) поэтому при обучении доказательствам для формирования правильного представления о проблематичном характере того или иного суждения следует применять на каждом шаге вопросы “Почему?”, “На каком основании?”

В курсе планиметрии обучение доказательствам проводится конкретно-индуктивным методом. Так как ученики в курсе геометрии, по мнению Шохор-Троцкого, занимаются преимущественно решением задач. Теоремы они доказывают только такие, которые не принадлежат к числу очевидных для них и которые не требуют слишком тонких рассуждений. Поэтому целесообразно в некоторых случаях предлагать учащимся для решения задачи абстрактного характера, подготавливающие самостоятельное формирование или доказательство теорем.


1. Суждение, умозаключение, высказывание

Суждение – это такая форма мышления, в которой отражается наличие или отсутствие самого объекта, наличие или отсутствие его свойств, связей.

Суждение – это форма связей понятий друг с другом, которая обладает двумя свойствами: 1) что-либо утверждает или отрицает; 2) является или истинным, или ложным.

Например: 1) любой параллелограмм есть ромб – ложно; 2) любой ромб есть параллелограмм – истинно; 3) “ есть функция” – суждение выражает связь понятий по объёму, т.е.  - составная часть класса функций; вместе с тем ей присуще всё то, что свойственно функциям; 4) многочлен непрерывен при всех значениях независимой переменной – истинно.

Каждая наука есть определенная система суждений об объектах , являющихся предметом ее изучения.

Например: "Сумма углов каждого треугольника равна 180 градусов" – это суждение сформулировано в виде геометрического предложения, принадлежащего евклидовой геометрии , т. к. а) состоит из геометрических (сумма углов, треугольник 180 градусов) и логических (всякого, равна) терминов или символов; б) истинно т.к. доказывается в рамках евклидовой геометрии.

Суждения образуются в мышлении 2 способами: непосредственно и опосредовано.

Например: 1. Эта фигура – круг - суждения выражает результат восприятия.

2. x2=-2 – не имеет действительных корней суждений опосредованное, оно возникло в результате особой мыслительной деятельности, называемой умозаключением.

Умозаключение – процесс получения нового суждения – вывода из одного или нескольких данных суждений.

Например:

1)   x2=-2 – уравнение;

2)   квадрат действительного числа больше или равен нулю;

3)   корень обращает уравнение в верное числовое равенство.

Из этих трех суждений получаем новое: уравнение x2=-2 не имеет действительных корней.

В математической логике используют термин “высказывание”, имеющий смысл, близкий к понятию “суждение”. Под высказываниями производятся следующие операции: а) отрицание высказывания; б) конъюнкция; в) дизъюнкция; г) импликация.

Математическая логика, исходя из основных законов формальной логики, исследует закономерности логических процессов на основе применения математических методов.

Для нее характерна формализация логических операций, полное абстрагирование от конкретного содержания предложений.

Например: (все растения красные)´(все собаки – растения) =>(все собаки красные).

2. Основные виды математических предложений

Математическое суждение принято называть предложением.

Например: “S есть P” - S - логическое подлежащее или субъект мысли (то, о чем идет речь в предложении); Р – логическое сказуемое или предикат мысли. Суждения часто даются в условной форме: “если есть А, то есть и В”.

Раскрыть логическую структуру составного предложения, – значит, показать, из каких элементарных предложений сконструировано данное составное предложение и как оно составлено из них, т.е. с помощью каких и в каком порядке применяемых логических связок “не”, “и”, “или”, “если…,то…”, “тогда, и только тогда”, “для всякого”, “существует”, обозначающих логические операции, с помощью которых из одних предложений образуются другие. Например:

Элементарные предложения:

дан DАВС; (x) АВ=ВС; (y) АД=ДС; (z) ВДДС.

Составные предложения:

1. Если АВ=ВС и АД=ДС, то ВДДС – истинное.

2. Если АВ=ВС, то АД=ДС и ВДДС – ложное.А

3. Если ДВ=ВС и ВД не перпендикулярно АС,

то АДДС – истинное.

Логические структуры для 1. и 3. выглядят так: 1) Если x и y, то z. 3) Если x и не z, то не y.

Например:

1.   Если число целое и положительное, то оно натуральное;

2.   Если число целое и не натуральное, то оно не положительное.

Аксиома – предложение, принимаемое без доказательства. Определенное число аксиом образует систему исходных положений некоторой научной теории, лежащую в основе доказательств других положений (теорем) этой теории, в границах которой каждая аксиома принимается без доказательства.

Постулат – это предложение, в котором выражается некоторое требование (условие), которому должно удовлетворять некоторое понятие или некоторое отношение между понятиями.

Например, понятие а||b определяется двумя постулатами:

1.   (a)(b);

2.   (a=b)(ab=0).

Теорема – математическое предложение, истинность которого устанавливается посредством доказательства (рассуждения), логического следствия других предложений, принимаемых за достоверные.

Можно отметить два подхода к пониманию теоремы:

А.В. Погорелов (геометрия “7-11”) “Правильность утверждения о свойстве той или иной геометрической фигуры устанавливал путем рассуждения. Это рассуждение называется доказательством. А само утверждение, которое доказывается, называется теоремой. … Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Это часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы”.

Структура теоремы, предполагаемая В.П. Болтянским: а) разъяснительная часть; б) условие; в) заключение.

Например, “если сумма цифр числа n делится на 3, то само число n делится на 3”.

Условие: сумма цифр числа n делится на 3

Заключение: само число делится на 3.

Разъяснительная часть: n – любое натуральное число.

Используя логическую символику, теорема представляется так:

 - импликация (если …, то …).

Имея прямую теорему (), можно образовать новые теоремы:

1.  - обратная;

2. - противоположная;

3.  -обратная противоположной или контрапозитивная.

Эти теоремы обладают следующими свойствами:

а) () и () - одновременно истинны или ложны;

б) () и () - одновременно истинны или ложны.

Высказывание p называется необходимым условием для q, если импликация () есть истинное следствие. Например, чтобы число делилось на 6, необходимо (не недостаточно), чтобы оно было чётным.

p – четное число, q – число кратно 6. Þ () – и.

Высказывание p называется достаточным условием для q, если импликация () есть истинное следствие. Например, чтобы число было кратно 5, достаточно, чтобы оно было кратно 25. (р: кратно 25; q: кратно 5) Þ(pÞq)

Замечание: Для определения необходимо условие следует подобрать контр пример, опровержение данного утверждения.

Условие р называется необходимым и достаточным для q, если истины одновременно обе импликации: (pÞq) и (qÞp), т.е. имеет место эквивалентность.

Характеристическое свойство наиболее полно определяет объект, выделяя его из некоторого множества сходных объектов, позволяет его сконструировать.

Например, характеристическое свойство арифметической прогрессии:

начиная со второго члена, все члены прогрессии удовлетворяют свойству:  - быть средним арифметическим двух соседних с ним членов (или отстоять от него на равных расстояниях)

Пример необходимого и достаточного условия:

 

3 Методика изучения теорем

Процесс доказательства теорем и геометрии выражает связь единичных суждений (чертеж) и общих (использование общих свойств фигур) поэтому при обучении доказательствам для формирования правильного представления о проблематичном характере того или иного суждения следует применять на каждом шаге вопросы “Почему?”, “На каком основании?”

В курсе планиметрии обучение доказательствам проводится конкретно-индуктивным методом. Так как ученики в курсе геометрии, по мнению Шохор-Троцкого, занимаются преимущественно решением задач. Теоремы они доказывают только такие, которые не принадлежат к числу очевидных для них и которые не требуют слишком тонких рассуждений. Поэтому целесообразно в некоторых случаях предлагать учащимся для решения задачи абстрактного характера, подготавливающие самостоятельное формирование или доказательство теорем.

Например: установить зависимость между сторонами в треугольнике; или свойства биссектрисы угла при вершине равнобедренного треугольника эмпирически.

В процессе обучения у школьников должно быть сформировано следующее понимание термина “доказательство”:

1)допускаются истинными некоторые отношения и факты (которые составляют условие теорем);

2)от условия к заключению строится логическая последовательная цепочка предложений, каждое из них должно быть обосновано с помощью суждений, выраженных в условии, определений известных понятий, аксиом или ранее доказанных утверждений;

3)заключение является последним звеном в цепочке этих логически расположенных предложений.

Например: в курсе математики 5-6 классов этому способствуют задачи с таким содержанием: “Дополнить приведённое доказательство математических утверждений, выполняя указанные выше требования, предъявляемые к математическим доказательствам”.

“Если a:b=c, то a=bc. Доказать”

Условие: a:b=c. Заключение: a=bc.

Предложение обоснование

1)a:b=c

2)a=bc

1) условие

2) почему?


В школьном обучении некоторые фрагменты математической теории излагаются содержательно (неформально), поэтому доказательство также содержательны, т.е. в них используются обычные рассуждения, а правила логического вывода не фиксируются. Среди таких правил можно выделить:

1)правило заключения: P; “если P, то Q” - вывод: “Q”.

2)правило введения конъюнкции: P; Q – вывод “P и Q”.

3)правило силлогизма: “если P, то Q”; “если Q, то R” - вывод “если P, то R”.

4)правило отрицания: “если A, то B”, “не B” - вывод “не А”.

5)правило контрапозиции: “если A, то B” - вывод “если не B, то не A”.

6)правило расширенной контрапозиции: “если A и B, то C” - вывод “если A и не С, то не B”.

7)Сведение к абсурду – “если Г, А=>B”, “Г, А=>не B” - вывод “Г=> не А”, где Г – список посылок.

Правило контрапозиции и сведение к абсурду широко применяется в косвенных доказательствах, примером которого может служить доказательство от противного.

Косвенное доказательство некоторой теоремы Т состоит в том, что исходит из отрицания Т, называемого допущением косвенного доказательства и выводят из него ложное заключение применением правила сведения к абсурду.

Например: если а||с, и b||с, то a||b. Допущение: a||c и b||c, но a не|| b. Согласно определению параллельных прямых получаем: если a не|| b => $с (сÎа Ù сÎb), поэтому по правилу введения конъюнкции: из а||c и b||c. $с (сÎа Ù сÎb) имеем: a||c и b||c и $с (сÎа Ù сÎb). Но по аксиоме параллельных прямых (из Т) неверно, что: a||c и b||c и $ с (сÎа Ù сÎb), т.е. из наших допущений вывели противоречие, которое и доказывает теорему.

Специальные формы косвенного доказательства:

1)доказательство методом исключения: надо доказать предложение: “если B, то Q1”, иначе: Г, Р=>Q1: наряду с Q1 рассматриваются все остальные возможности, которые являются: аксиомой, определением, ранее доказанной теоремой или следствием из них. Затем доказывается, что каждая из остальных возможностей, кроме Q1, ведёт к противоречию.

Например: если каждая плоскость, пересекающая прямую а, пересекает и прямую b, то эти прямые параллельны.

Требуется установить следование: “Г,Р” ® Q не ||; “Г” и "a (если a´a, a´b) Þ a||b.

Исходим из предложений: Q1:a||b; Q2:a´b; Q3: a-b – скрещиваются.

Допущение Q2:a´b даёт $a (a´a и ) (достаточно провести произвольную плоскость α через b, отличную от плоскости определяемой пересекающимися прямыми a и b) или: так как $a (a´a и ) <=> не для всякой плоскости a (если a´a, то a´b), получаем “если Q2, то ”: если a´b, то не для всякой a если a´a, то a´b).

Из “если Q2, то ” и “Р” по правилу отрицания имеем: :.

Аналогично допущение Q3: “a-b скрещиваются” приводит к не любой плоскости a (если a´a, то a´b) (достаточно через b и какую-нибудь точку прямой a провести плоскость). Получаем из: “если Q3, то ” и “Р” по правилу отрицания :.

Итак, получаем  и, т. е. Q2 и Q3 – неверно, поэтому верно Q1: a||b.

2)Метод математической индукции – специальный метод доказательства, применяемый к предложениям типа: “"xÎN P(x)”, т.е. к предложениям, выражающим некоторое свойство, присущее любому натуральному числу.

Схематически полная логическое доказательство теоремы можно составить так: 1) точное понятие; 2) включаем все посылки; 3) не опускают никаких промежуточных рассуждений; 4) явно указывающее правила вывода.

В практике школьного обучения математики наиболее часто используется прямое доказательство, основанное на содержательном доказательстве в свернутом виде: 1) интуитивное понятие; 2) опускают некоторые в частности, общие посылки; 3) опускают отдельные шаги; 4) не фиксируют использование логики.

Например: Диагонали прямоугольника равны.

Теорему можно доказать: а) с помощью осевой симметрии; б) с помощью равенства прямоугольников. Отметим, что различные доказательства теоремы отличаются как математическими посылками, (используемыми в них истинными предложениями данной теории), так и логикой (используемыми правилами).

Доказательство 1.

“Если четырёхугольник – прямоугольник, то его диагонали равны” или “Если ABCD – прямоугольник, то AC=BD”.

Точка D симметрична A; B – симметрична C относительно MN (это непосредственно следует из ранее доказанной теоремы: “Серединный перпендикуляр и сторона прямоугольника являются осью симметрии). Значит, отрезок AC и DB симметричны относительно оси MN. Поэтому AC=BD.

Доказательство 2.

, т.к. они прямоугольные (), AB=CD как противоположные стороны прямоугольника; AD – общая сторона. Следовательно, AB=CD.

Методика введения теорем предполагает подготовку учащихся к восприятию ее доказательства.

1) Для того, чтобы учащиеся поняли логические части доказательства, применяют метод целесообразных задач.

Например: При доказательстве того факта, что угол между боковым ребром призмы и ее высотой равен углу между плоскостями основания и перпендикулярного сечения, необходимого предварительно решить по готовым чертежам следующие задачи:



1. По данным на рисунке найти  и угол между прямыми BO и OC.

Замечание: угол между двумя прямыми (двумя плоскостями) острый.


2. Угол между плоскостями  и  равен , прямая OA перпендикулярна плоскости , ; прямая OB перпендикулярна плоскости , . Найти угол между прямыми OA и OB.

2) Для подготовки учащихся к восприятию доказательства теоремы можно использовать прием многократного доказательства (например, тройная прокрутка).

а) учитель излагает схему (идею, канву) доказательства. Возможно, при этом использование эвристической беседы, которая может быть или аналитико-синтетический или синтетический. Вопросы должны быть сформулированы четко, отражая наиболее важные логические этапы доказательства. После каждого вопроса необходима пауза для того, чтобы учащиеся смогли самостоятельно найти ответ:

б) учитель излагает доказательство теоремы в виде краткого рассказа, обосновывая каждый шаг;

в) повторение доказательства в полном объеме.

Еще один прием обучения доказательством – обучение учащихся составленного плана доказательства теоремы, при котором выполняются следующие этапы:

·          даётся готовый план доказательства новой теоремы и учащимся предлагается самим доказать ее с помощью плана. Преимущества: 1) план разбивает доказательство теоремы на ряд простых, элементарных задач, которые учащиеся могут решить; 2) у учащихся появляется уверенность в том, что они смогут доказать новую теорему; 3) план позволяет охватить все доказательство в целом, у учащихся возникает чувство полного понимания;

·          учащихся учат составлять план уже изученной теоремы. Сначала эта работа выполняется коллективно, а затем самостоятельно.


Заключение

Раскрыть логическую структуру составного предложения, – значит, показать, из каких элементарных предложений сконструировано данное составное предложение и как оно составлено из них, т.е. с помощью каких и в каком порядке применяемых логических связок “не”, “и”, “или”, “если…,то…”, “тогда, и только тогда”, “для всякого”, “существует”, обозначающих логические операции, с помощью которых из одних предложений образуются другие.


Литература

1. К.О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае»,1997г.

2. Н.М. Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990г.

3. Г. Фройденталь «Математика как педагогическая задача»,М., «Просвещение», 1998г.

4. Н.Н. «Математическая лаборатория», М., «Просвещение», 1997г.

5. Ю.М. Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999г.

6. А.А. Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000г.