Курсовая работа: Основы расчёта оболочек
Омский государственный технический университет
Кафедра “Авиа- и ракетостроение”
Специальность 160801 - “Ракетостроение”
Курсовая работа
по дисциплине
“Строительная механика летательных аппаратов”
Основы расчёта оболочек
Омск 2005
Содержание
1. Расчет цилиндрической оболочки, подкрепленной шпангоутами
2. Исследование напряжённо-деформированного состояния полусферической оболочки, заполненной жидкостью
3. Исследование напряжённо-деформированного состояния сферической оболочки, заполненной жидкостью
4. Расчёт сферического топливного бака с опорой по экватору
5. Расчёт бака на прочность
Список литературы
1. РАСЧЕТ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ, ПОДКРЕПЛЕННОЙ ШПАНГОУТАМИ
Условие задачи. Рассмотрим цилиндрическую оболочку постоянной толщины , радиуса , подкрепленную шпангоутами, равномерно расположенными по её длине. Сечение шпангоута: . Оболочка нагружена избыточным давлением (рис.1).
Цель расчета. Определить минимальное расстояние между шпангоутами , которое позволяет исключить взаимное влияние на оболочку двух соседних шпангоутов.
Рис.1. Расчетная схема
Исходные данные
Погонная нагрузка МПа;
Радиус оболочки м;
Толщина оболочки м;
Ширина шпангоута , м;
Толщина шпангоута , м;
Материал оболочки:
марка ВТ6С (О);
коэффициент Пуассона ;
модуль Юнга
Выполнение расчёта
Расчётная схема 1. Шпангоуты абсолютно жёсткие
Определим цилиндрическую жёсткость оболочки по формуле:
;
Вычислим коэффициент затухания гармонической функции по формуле:
;
Определим силу взаимодействия между шпангоутами и оболочкой:
Определим перерезывающую силу на краю оболочки:
Определим погонный изгибающий момент в месте установки шпангоута:
Погонный изгибающий момент по длине оболочки, затухающий по периодическому закону, вычислим по следующей формуле:
где - число расчётных точек на всей области существования функции .
Принимаем .
Так как область существования гармонической функции определяется условием , то находим шаг вычислений момента из выражения:
;
Результаты расчёта заносим в таблицу 1 и вычерчиваем график функции (рис.2, рис.3).
С использованием графика определяем координату второй точки пересечения графика функции с осью абсцисс и находим минимальное расстояние между шпангоутами :
Расчётная схема 2. Расчёт подкреплённой оболочки с податливыми (упругими) шпангоутами
Найдём площадь поперечного сечения шпангоута :
Определим коэффициент податливости шпангоута :
Погонный изгибающий момент по длине оболочки с учётом податливости шпангоута:
Результаты вычислений заносим в таблицу 1 и строим график функции , совмещённый с графиком (рис.2, рис.3).
Определим в процентах снижение величины изгибающего момента при учёте податливости шпангоута:
;
Таблица 1
2. ИССЛЕДОВАНИЕ НАПРЯЖЁННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПОЛУСФЕРИЧЕСКОЙ ОБОЛОЧКИ, ЗАПОЛНЕННОЙ ЖИДКОСТЬЮ
Условие задачи: Тонкостенный сосуд (рис.1), выполненный в виде полусферы, частично заполнен жидкостью. Закрепление оболочки по диаметру окружности – свободное.
Цель расчета:
1. Построить эпюры погонных меридиональных и кольцевых усилий.
2. Определить толщину стенки оболочки, без учёта её собственного веса.
Исходные данные:
Радиус сферы: м;
Угол зеркала жидкости: ;
Плотность жидкости (горючее):;
Коэффициент безопасности ;
Материал оболочки:
Марка ВТ6С (О);
предел прочности .
Выполнение расчёта
1. Расчёт участка оболочки над уровнем жидкости
Рассмотрим участок оболочки (рис. 1). На расстоянии от полюса отсекаем часть оболочки нормальным коническим сечением с углом широты (рис. 2).
1.1 Определяем границы участка BC: .
1.2 Составляем уравнение равновесия внешних и внутренних сил в проекции на вертикальную ось для отсечённой части оболочки:
,
где - вес жидкости, заполняющей полусферу; - координаты расчётного сечения; - меридиональная погонная сила.
1.3 Определяем высоту столба жидкости в полусферической оболочке:
1.4 Находим объём шарового сегмента, заполненного жидкостью:
1.5 Вычисляем вес жидкости по формуле:
1.6 Определяем текущий радиус кольцевого сечения оболочки:
1.7 Находим погонное меридиональное усилие из уравнения равновесия отсечённой части оболочки:
.
1.8 Определяем погонное кольцевое усилие для участка , используя уравнение Лапласа:
,
где , – главные радиусы кривизны расчётного сечения оболочки;
– интенсивность внешней нагрузки на стенку в расчётном сечении оболочки.
Для сферы R1 = R2 и для участка = -.
Результаты расчёта заносим в таблицу 1 при условии .
Таблица 1
№ точки |
, град. |
, Н/м |
, Н/м |
1 | 90 | 1035 | -1035 |
2 | 87 | 1037 | -1037 |
3 | 84 | 1046 | -1046 |
4 | 81 | 1061 | -1061 |
5 | 78 | 1081 | -1081 |
6 | 75 | 1109 | -1109 |
7 | 72 | 1144 | -1144 |
8 | 69 | 1187 | -1187 |
9 | 66 | 1240 | -1240 |
10 | 63 | 1303 | -1303 |
11 | 60 | 1380 | -1380 |
2. Расчёт участка оболочки под уровнем жидкости
Рассмотрим участок оболочки (рис.1). Построим нормальное коническое сечение на расстоянии от полюса оболочки. Положение расчётного сечения определяется углом широты
2.1 Определим границы участка : .
2.2 Составляем уравнение равновесия внешних и внутренних сил в проекции на вертикальную ось для отсечённой части оболочки:
,
где - вес жидкости, заключённой в шаровом сегменте высотой ; - давление жидкости в расчётном сечении; - площадь поперечного сечения оболочки на уровне ; - радиус поперечного сечения оболочки на уровне .
2.3 Определяем составляющие уравнения равновесия:
Объём шарового сегмента:
,
где .
Вес жидкости: .
Давление жидкости на уровне от зеркала жидкости:
.
Площадь поперечного сечения
,
где .
Значения составляющих уравнения равновесия заносим в таблицу 2.
Таблица 2
№ точки |
, град. |
Vшс, м3 |
G, Н | q, Па |
S, м2 |
r, м |
1 | 60 | 0,932 | 7313 | 0 | 3,443 | 0,974 |
2 | 54 | 0,656 | 5145 | 775,06 | 3,217 | 0,910 |
3 | 48 | 0,436 | 3419 | 1493 | 2,955 | 0,836 |
4 | 42 | 0,270 | 2118 | 2147 | 2,661 | 0,753 |
5 | 36 | 0,153 | 1199 | 2728 | 2,337 | 0,661 |
6 | 30 | 0,077 | 601,96 | 3232 | 1,988 | 0,563 |
7 | 24 | 0,032 | 254,83 | 3651 | 1,617 | 0,458 |
8 | 18 | 0,011 | 82,72 | 3982 | 1,229 | 0,348 |
9 | 12 | 0,00212 | 16,64 | 4222 | 0,827 | 0,234 |
10 | 6 | 0,000134 | 1,05 | 4366 | 0,416 | 0,118 |
11 | 0 | 0 | 0 | 4415 | 0 | 0 |
2.4 Подставим найденные значения в уравнение равновесия и определим меридиональное усилие
: .
2.5 Получим выражение для погонного кольцевого усилия из уравнения Лапласа при
R1 = R2 = R,
.
Результаты расчёта заносим в таблицу 3 при условии .
Таблица 3
№ точки | φ, град. |
, Н/м |
,Н/м |
1 | 60 | 1380 | -1380 |
2 | 54 | 1548 | -676,2 |
3 | 48 | 1716 | -35,93 |
4 | 42 | 1877 | 538,4 |
5 | 36 | 2026 | 1,044 |
6 | 30 | 2158 | 1477 |
7 | 24 | 2272 | 1836 |
8 | 18 | 2363 | 2118 |
9 | 12 | 2429 | 2320 |
10 | 6 | 2470 | 2442 |
11 | 0 | 2483 | 2483 |
По данным таблиц строим эпюры погонных усилий. Схема эпюры приведена на рис. 4.
С помощью эпюры определяем наиболее напряжённое сечение оболочки и максимальные усилия
.
3. Определение толщины стенки оболочки
3.1 Найдём допускаемое напряжение материала оболочки:
3.2 Определим толщину стенки:
,
3. ИССЛЕДОВАНИЕ НАПРЯЖЁННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ СФЕРИЧЕСКОЙ ОБОЛОЧКИ, ЗАПОЛНЕННОЙ ЖИДКОСТЬЮ
Условие задачи: Построить эпюры безмоментных напряжений и для сферического сосуда (рис. 1), полностью заполненного жидкостью.
Исходные данные:
Радиус оболочки: м;
Плотность жидкости (окислитель):
;
Толщина стенки оболочки:
.
Рис. 1. Схема оболочки
Выполнение расчёта
1. Выводы расчётных зависимостей для верхней полусферы
В верхней полусфере отсечём часть оболочки нормальным коническим сечением с углом при вершине конуса и составим уравнение равновесия отсеченной части оболочки (рис. 2):
,
где – равнодействующая сил давления жидкости на стенку оболочки в проекции на
вертикальную ось.
Жидкость действует на стенку оболочки переменным давлением. Равнодействующую сил давления жидкости на вертикальную ось определим по формуле:
,
где – объём цилиндра; – объём шарового сегмента, рис. 2.
,
где - высота столба жидкости в расчётном сечении.
Рис. 2. Расчётная схема
Получаем:
.
Из уравнения равновесия после подстановки выражения для силы имеем:
.
Отсюда меридиональное напряжение:
.
Определим кольцевое напряжение . Для этого обратимся к уравнению Лапласа, учитывая, что для сферической оболочки R1=R2=R::
,
где - давление жидкости в рассматриваемом сечении оболочки.
После подстановки в уравнение Лапласа получаем:
.
Принимая угол в диапазоне от 0˚ до 90˚, занесём значения составляющих уравнения равновесия, кольцевых и меридиональных напряжений с шагом угла , равным 10˚,в таблицу 1.
Таблица 1
, град. |
л, м3 |
, м3 |
, Н |
, Па |
, Па |
, Па |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0,002049 | 0,001027 | 11,445 | 191,409 |
2,442 |
7,350 |
20 | 0,032 | 0,016 | 174,869 | 759,818 |
9,616 |
2,925 |
30 | 0,15 | 0,077 | 818,854 | 1688 |
2,107 |
6,528 |
40 | 0,432 | 0,226 | 2314 | 2948 |
3,603 |
1,148 |
50 | 0,938 | 0,503 | 4870 | 4501 |
5,338 |
1,768 |
60 | 1,677 | 0,932 | 8349 | 6300 |
7,161 |
2,506 |
70 | 2,599 | 1,512 | 12170 | 8290 |
8,869 |
3,354 |
80 | 3,585 | 2,213 | 15360 | 10410 |
1,019 |
4,307 |
90 | 4,473 | 2,982 | 16700 | 12600 |
1,074 |
5,371 |
2. Выводы расчётных зависимостей для нижней полусферы
Рис. 3. Расчётная схема
Отсечём нормальным коническим сечением часть сферы (рис. 3). Вес жидкости в объёме шарового сегмента и равнодействующая от гидростатического давления жидкости , находящейся выше рассматриваемого сечения, уравновешиваются реакцией опоры N и результирующим меридиональным усилием от погонных меридиональных сил, распределённых по круговому контуру шарового сегмента в сечении . Отсюда получим следующее уравнение равновесия:
,
где - реакция опоры, равная весу жидкости в объёме шара.
Н;
- гидростатическое давление жидкости;
- площадь поперечного сечения;
- вес жидкости в объёме шарового сегмента.
После подстановки получим:
Отсюда имеем:
.
Для нижней части полусферы определяем из уравнения Лапласа:
, где .
Отсюда:
.
Принимая угол в диапазоне от 90˚ до 0˚, занесём значения составляющих уравнения равновесия, кольцевых и меридиональных напряжений с шагом угла , равным 10˚,в таблицу 2.
Таблица 2
, град. |
, Па |
S, м2 |
, Н |
, Па |
, Па |
90 | 12600 | 3,976 | 33410 |
1,074 |
5,371 |
80 | 14790 | 3,856 | 24790 |
9,958 |
6,568 |
70 | 16910 | 3,511 | 16940 |
6,922 |
7,957 |
60 | 18910 | 2,982 | 10440 |
-1,908 |
9,667 |
50 | 20700 | 2,333 | 5633 |
-1,411 |
1,2 |
40 | 22260 | 1,643 | 2529 |
-4,314 |
1,57 |
30 | 23520 | 0,994 | 859,303 |
-1,095 |
2,298 |
20 | 24450 | 0,465 | 178,593 |
-3,038 |
4,288 |
10 | 25020 | 0,12 | 11,508 |
-1,361 |
1,489 |
0 | 25210 | 0 | 0 |
-1,362 |
1,362 |
Выводы
В опорной точке сферы безмоментные напряжения обращаются в бесконечность. Это является следствием обращения в ноль площади сечения, по которой действуют напряжения . В реальных условиях сосредоточенных в точке сил не существует, и поэтому эта особенность имеет место лишь в расчётной схеме.
Рис. 4. Эпюра напряжений и
4. РАСЧЁТ СФЕРИЧЕСКОГО ТОПЛИВНОГО БАКА С ОПОРОЙ ПО ЭКВАТОРУ
Условие задачи: Сферический топливный бак с опорой по экватору, заполненный жидкостью, находится под давлением наддува (рис.1, рис. 2).
Цель расчёта: Определить толщину стенки и массу конструкции бака при заданных размерах и нагрузке.
Исходные данные:
Радиус оболочки: м;
Плотность жидкости (горючее): ;
Давление наддува: ;
Уровень жидкости: ;
Коэффициент осевой перегрузки: ;
Коэффициент безопасности: ;
Материал оболочки:
марка ВТ6С (О);
предел прочности ;
плотность .
Примечание: Для упрощения принимаем: .
Выполнение расчёта
1. Расчёт оболочки над опорой
Формулы для расчёта погонных меридиональных и кольцевых усилий над опорой от действия давления жидкости и давления наддува имеют вид:
;
,
где – угол, отсчитываемый в плоскости меридиана от верхнего полюса;
– ускорение свободного падения.
Принимая угол в диапазоне от 0˚ до 90˚, занесём значения кольцевых и меридиональных усилий с шагом угла , равным 10˚,в таблицу 1.
Таблица 1
, град |
, Н/м |
, Н/м |
0 | 140600 | 140600 |
10 | 140800 | 141000 |
20 | 141100 | 142200 |
30 | 141800 | 144100 |
40 | 142600 | 146800 |
50 | 143500 | 150200 |
60 | 144500 | 154100 |
70 | 145400 | 158700 |
80 | 146100 | 163900 |
90 | 146400 | 169600 |
2. Расчёт оболочки под опорой
Выведем расчётные формулы для погонных меридиональных и кольцевых усилий от действия давления жидкости и давления наддува под опорой топливного бака . Составим уравнение равновесия внешних и внутренних сил для выделенного сечения оболочки (рис. 2) в проекции на вертикальную ось . Получим:
,
где – давление в рассматриваемом сечении; S – площадь расчётного поперечного сечения;
– вес жидкости в шаровом сегменте, отсечённом нормальным коническим сечением с углом ;
– равнодействующая погонных меридиональных усилий в проекции на ось .
Давление в произвольном сечении оболочки равно давлению наддува плюс давление столба жидкости над рассматриваемым сечением:
,
где h – высота столба жидкости от зеркала жидкости до расчётного сечения.
,
,
где - радиус рассматриваемого сечения.
Определим вес жидкости в шаровом сегменте: ,
где – объём шарового сегмента, отсечённого нормальным коническим сечением с углом .
.
Спроектируем погонные меридиональные усилия в расчётном сечении на вертикальную ось : .
Величина равнодействующей от распределённых по кольцу радиуса r меридиональных сил определяется по формуле:
.
Окончательно получаем .
Принимая угол в диапазоне от 90˚ до 0˚, занесём значения составляющих уравнения равновесия с шагом угла , равным 10˚,в таблицу 2.
Таблица 2
, град |
, МПа |
S, м2 |
, |
, Н |
90 | 0,2809 | 3,976 | 2,982 | 81910 |
80 | 0,2863 | 3,856 | 2,213 | 60790 |
70 | 0,2915 | 3,511 | 1,512 | 41530 |
60 | 0,2964 | 2,982 | 0,932 | 25600 |
50 | 0,3008 | 2,333 | 0,503 | 13810 |
40 | 0,3046 | 1,643 | 0,226 | 6201 |
30 | 0,3077 | 0,994 | 0,077 | 2107 |
20 | 0,3099 | 0,465 | 0,016 | 437,881 |
10 | 0,3113 | 0,120 | 0,001027 | 28,215 |
0 | 0,3118 | 0 | 0 | 0 |
Подставляем полученные выражения , S, , в уравнение равновесия и преобразовываем.
Получаем формулу для вычисления погонных меридиональных усилий:
.
Подставляя полученное выражение в уравнение Лапласа, определим погонные кольцевые усилия . Уравнения Лапласа в усилиях имеет вид:
,
где , – главные радиусы кривизны оболочки; – давление в рассматриваемом сечении.
Для сферического бака R1 = R2 = R, поэтому уравнение Лапласа принимает вид:
.
Подставив выражение в уравнение Лапласа и проведя преобразования, получим формулу для вычисления :
.
Принимая угол в диапазоне от 90˚ до 0˚, занесём значения составляющих уравнения равновесия с шагом угла , равным 10˚,в таблицу 3.
Таблица 3
, град |
, Н/м |
, Н/м |
90 | 169600 | 146400 |
80 | 169900 | 152200 |
70 | 170600 | 157300 |
60 | 171500 | 161900 |
50 | 172500 | 165900 |
40 | 173400 | 169200 |
30 | 174300 | 171900 |
20 | 174900 | 173800 |
10 | 175300 | 175000 |
0 | 175400 | 175400 |
Погонные усилия в сферическом баке принимают наибольшее значение в нижнем полюсе. Кроме того, в нижнем полюсе = . Сравнивая результаты вычислений значений , на экваторе для участков над опорой и под опорой, делаем вывод: усилия , терпят разрыв.
Определение толщины стенки бака
Расчёт на прочность производим по максимальным погонным усилиям.
Определяем напряжения в нижнем полюсе бака: ,
где – толщина стенки бака.
Подставив в эти формулы выражения для погонных меридиональных и кольцевых усилий, получим:
.
Минимальную толщину оболочки можно получить по формуле:
,
где – допускаемые напряжения.
Определяем массу оболочки бака:
,
где – площадь поверхности оболочки;
– плотность материала оболочки.
Построим эпюру погонных усилий , (рис. 3):
Рис. 3. Эпюра погонных усилий ,
5. РАСЧЁТ БАКА НА ПРОЧНОСТЬ
Условие задачи: Цилиндрический бак с верхним полуэллиптическим и нижним полусферическими днищами (рис.1) находится под действием давления наддува и заполнен жидкостью до уровня H.
Цель расчёта:
1. Определить величину безмоментных напряжений ;
2. Определить толщину обечайки и днищ бака.
Исходные данные:
Радиус бака: м;
Размеры эллиптического днища:
Высота столба жидкости: ;
Плотность жидкости (окислитель): ;
Давление наддува: ;
Коэффициент безопасности: ;
Материал оболочки:
марка ВТ6С (О);
предел прочности ;
.
Выполнение расчёта
Участок верхнего эллиптического днища
Рис. 2. Схема эллиптического днища
В днище нормальным коническим сечением I – I отсечём верхнюю часть оболочки и составим для неё уравнение равновесия. Выбираем оси координат так, как показано на рис. 2. Из уравнения равновесия и уравнения Лапласа получаем выражения для в расчётном сечении эллиптического днища в виде:
,
где , – радиусы кривизны рассматриваемого сечения оболочки,
,
,
где x, y – координаты точки в рассматриваемом сечении оболочки.
Для построения эпюр задаёмся значениями x. Координату y определяем из уравнения эллипса . Отсюда получаем
.
Меньшую полуось b разбиваем на 5 равных частей, для каждого сечения производим расчёты, результаты расчётов заносим в таблицу 1.
Таблица 1
№ сечения |
x, м |
y, м |
R1, м |
R2, м |
, МПа |
, МПа |
1 | 0 | 1,125 | 0,18 | 1,125 | ||
2 | 0,09 | 1,102 | 0,24 | 1,238 | ||
3 | 0,18 | 1,031 | 0,449 | 1,526 | ||
4 | 0,27 | 0,9 | 0,884 | 1,913 | ||
5 | 0,36 | 0,675 | 1,639 | 2,349 | ||
6 | 0,45 | 0 | 2,813 | 2,813 |
Участок цилиндра над зеркалом жидкости
Рис. 3. Сечение II – II
Нормальным сечением к оси бака II – II отсечём часть цилиндра, расположенную над зеркалом жидкости (рис. 3). Составим уравнение равновесия для верхней отсеченной части оболочки в проекции на вертикальную ось:
.
Отсюда меридиональное напряжение:
Па.
Для цилиндра ; , поэтому из уравнения Лапласа получаем кольцевое напряжение:
Па.
Участок цилиндра под зеркалом жидкости
Рис. 4. Сечение III – III
Для сечения III – III расчётная схема (рис. 4) будет отличаться от показанной на рис. 3 тем, что здесь необходимо дополнительно учесть давление на стенку цилиндрической части бака со стороны жидкости.
Уравнение равновесия в проекции на вертикальную ось бака остаётся без изменений:
.
Поэтому меридиональное напряжение не меняется:
Па.
Окружное напряжение определяем из уравнения Лапласа
,
где Па.
Отсюда Па.
Участок нижнего полусферического днища
Рис. 5. Сечение IV – IV
Для нижнего днища нормальным коническим сечением IV – IV с углом при вершине отсечём нижнюю часть сферической оболочки (рис. 5). Составим для неё уравнение равновесия внешних и внутренних сил в проекции на вертикальную ось оболочки:
,
где r – радиус кольцевого сечения оболочки, ;
S – площадь поперечного сечения, ;
- давление в расчётном сечении оболочки, ;
G – вес жидкости в объёме шарового сегмента, ;
Vc – объём шарового сегмента, .
Подставляя значения r, S, , G в уравнение равновесия определяем меридиональное напряжение :
Уравнение Лапласа для сферической оболочки имеет вид:
.
Подставляя в уравнение Лапласа , находим кольцевое напряжение в сечении IV – IV:
.
Построим таблицу 2 значений и в зависимости от угла в диапазоне от 0˚ до 90˚ с шагом в 15˚:
Таблица 2
, град |
, МПа |
, МПа |
0 | ||
15 | ||
30 | ||
45 | ||
60 | ||
75 | ||
90 |
По полученным напряжениям в характерных сечениях бака строим эпюры напряжений и (рис. 6).
Определение толщины стенок бака
Для определения толщины днищ и обечайки бака используем следующее условие:
σmax ≤ [σ], где [σ] = Па
Толщина стенки .
Получаем: для верхнего днища м;
для обечайки бака м;
для нижнего днища м.
Из расчётов видно, что δmax = δ2 = 0,518 мм – окончательная толщина стенки бака. По расчётной толщине стенки подбираем толщину листа согласно ГОСТ 22178 – 76:
.
Рис.6. Эпюры безмоментных напряжений и
Список литературы
1. Расчёт безмоментных оболочек: Методические указания по дисциплине “Основы расчёта оболочек” для специальностей: 130600-Ракетостроение, 130400-Ракетные двигатели/ Сост. Л.И. Гречух, И. Н. Гречух.- Омск: Изд-во ОмГТУ, 2002.- 32 с.