Курсовая работа: Проектирование технологического процесса изготовления детали "Корпус"
Кафедра технологии машиностроения
КУРСОВОЙ ПРОЕКТ
Дисциплина: технология машиностроения
Тема: Проектирование технологического процесса изготовления детали.
Выполнил студент гр./ /
Руководитель / /
«___» _____________200 г.
Оглавление
Введение-аннотация
В данной работе приведены основные этапы проектирования технологического процесса для детали – корпус.
На основе исходных данных (чертеж детали и годовая программа выпуска деталей) было выполнено: анализ технологической конструкции; выбор заготовки (выполнен чертеж) с назначением припусков и отклонений; спроектирован технологический процесс (заполнена технологическая документация); выбраны режимы обработки; назначены нормы времени и рассчитана загрузка станков.
Требуемые технологические расчеты приведены в пояснительной записке. В процессе проектирования заполнена технологическая документация (приведена в конце пояснительной записки).
1. Описание детали
1.1. Назначение детали, материал, механические свойства, химический состав
Деталь «корпус» предназначена для установки наружного кольца подшипников качения, а также установки уплотнительного кольца и крышки с прокладкой, для герметичной установки.
Заготовка детали получается литьем из серого чугуна СЧ 15-32 (самый дешевый металлический материал, обладает хорошими литейными и антифрикционными свойствами, износостойкостью, способностью гасить вибрации).
Механические свойства:
Модуль упругости:;
Допустимые напряжения при изгибе: ;
Допустимые напряжения при сжатии: ;
Допустимые напряжения при срезе: ;
Предел прочности при растяжении: ;
Твердость:
Химический состав:
Кремний – 0,3-5%
Марганец – до 1%
Сера – 0,1%
Углерод – 2,5%
Фосфор – 0,2%
Железо – остальное
1.2. Анализ точности изготовления детали и обоснование технического требования
Так как данная деталь является «корпусом» получаемым литьем, то не все поверхности у заготовки обрабатываются.
У детали будет только одна поверхность с шероховатостью , остальные имеют шероховатость и более, т. е. все поверхности (кроме ) будут обрабатываться за один проход, что не только удешевляет производство, но и уменьшает количество операций.
Так как данная деталь является ответственной, на нее задаются допуски по форме и расположению поверхностей: допуск параллельности – 0,04, допуск перпендикулярности – 0,016; овальность и конусообразность не более 0,015мм.
1.3. Анализ технологичности конструкции детали
· Данная конструкция детали является жесткой и виброустойчивой при обработки;
· На данной детали предусмотрены надежные технологические базы и места крепления;
· Имеется четкое разграничение обрабатываемых и необрабатываемых поверхностей;
· Все плоскости обрабатываются на проход;
· Большинство поверхностей обрабатываются с одной стороны;
· Все отверстия перпендикуляры к плоскости общего торца;
· Не технологичным является то, что все большинство поверхностей обрабатывается при одноинструментной обработки;
· В данной детали не удалось избежать глухих отверстий, но в них предусмотрен запас длины на сбег резьбы, размещения метчиков и стружки;
· В резьбовых отверстиях предусмотрена заходная фаска;
· На детали используются резьбы диаметром больше 6 мм;
· В детали отсутствуют длинные отверстия.
На основе проведенного анализа можно сделать вывод о технологичности данной детали «корпус».
2. Определение производства
2.1. Определение типа производства
На данном этапе проектирования тип производства определяется приблизительно по годовому объему выпуска и массе.
Так как годовая программа выпуска , то по таблице [1 стр.123] определяем, что данное производство – крупносерийное.
2.2. Расчет размера партии и такта выпуска
Такт выпуска определяется по формуле:
где: - годовая программа выпуска
- фонд времени работы оборудования (при двухсменной работе равен 4000)
Размер партии запуска определяется по формуле:
где: - периодичность запуска (если один раз в квартал)
3. Определение метода получения заготовки
Поскольку данная деталь производится из чугуна марки СЧ 15-32, то лучше всего ее получать литьем в песчано-глинистые формы.
3.1. Расчет себестоимости изготовления
Расчет стоимости литья в песчано-глинистые формы определяется по формуле:
где: - базовая стоимость штамповки (4500 руб. за тонну);
- масса заготовки ;
- коэффициент, зависящий от точности отливки (5 класс точности);
- коэффициент, зависящий от марки материала отливки (СЧ 15-32);
-коэффициент сложности отливки (3 группа сложности);
-коэффициент, зависящий от массы заготовки (от 3 до 5 кг);
-коэффициент, зависящий от серийности производства.
4. Разработка технологического процесса изготовления детали
4.1. Назначение маршрута обработки отдельных поверхностей
На этом этапе проектирования технологического процесса решается каким методом и сколько раз обрабатывать отдельные поверхности. Для этого используем таблицы экономической точности обработки на станках ([2] стр. 150). В этих таблицах указано, какой квалитет и шероховатость получается при применении различных методов обработки. Таблицы составлены на основе опыта работы предприятия на станках нормальной точности при среднем разряде работ и средних режимах.
По требованиям точности для поверхностей назначаем маршруты обработки и заносим все данные в таблицу 1.
Таблица 1 Назначение маршрута обработки отдельных поверхностей детали
Поверхность | квалитет | Ra | Маршрут обработки |
ø36 | 12 | 12,5 | Однократное растачивание |
ø72 | 7 | 3,2 | Трехкратное растачивание |
ø5 | 14 | 12,5 | Сверление однократное |
22 | 14 | 6,3 | Фрезерование однократное |
55 | 14 | 6,3 | Фрезерование однократное |
118 | 14 | 6,3 | Фрезерование однократное |
20 | 14 | 6,3 | Фрезерование однократное |
М8-7Н | - | 6,3 | Однократное сверление; сверление + метчик |
Канавка В | 14 | 12,5 | Однократное растачивание |
Канавка Д | 15 | 3,2 | Однократное растачивание |
R7 | 14 | 12,5 | Фрезерование однократное |
Фаски в резьбе | 14 | 12,5 | Однократная обработка |
Фаски в отверстии |
4.2. Назначение маршрута обработки детали в целом
Составляем для данной детали технологический процесс.
Технологический процесс:
005 | Литейная | Лить заготовку согласно чертежу |
010 | Термическая | Снятие внутренних напряжений (см. технологический процесс отдела главного металлурга) |
015 | Вертикально-фрезерная | Фрезеровать плоскость основания 36х190 в размер 22h14 окончательно |
020 | Радиально-сверлильная | Сверлить два отверстия ø5Н14 на проход, согласно чертежа |
025 | Горизонтально-фрезерная | Фрезеровать три плоскости, выдерживая размеры 20h14, 40H15 и 118h14 |
030 | Горизонтально-расточная |
Фрезеровать боковую плоскость окончательно в размер 55±0,95; Расточить отверстие ø72Н7 предварительно и с припуском под тонкое растачивание; Расточить канавку В в размер ø48Н14, канавку Д в размер ø73Н15 окончательно; Расточить фаску 1х450 окончательно; Сверлить 4 отверстия под М8 и фаски в этих отверстиях одновременно, выдерживая размеры 20, ø90 окончательно; Нарезать резьбу М8-7Н в 4 отверстиях, согласно чертежа |
035 | Вертикально-фрезерная | Фрезеровать два паза, выдерживая размеры R7, 20, 14 и 8 |
040 | Алмазно-расточная | Расточить отверстие ø72Н7 окончательно согласно чертежа |
045 | Моечная | |
050 | Контрольная | |
055 | Покрытие |
5. Назначение и расчет припусков на механическую обработку
5.1. Аналитический расчет припусков на диаметральный размер
Рассчитываем припуск на обработку и промежуточные предельные размеры на поверхность ø72Н7. Технологический маршрут обработки поверхности ø72Н7 состоит предварительного растачивания, растачивания с припуском под окончательное и алмазное точение.
Расчет ведем по методике [2].
Технологический маршрут записывается в таблицу, 2 также в таблицу заносятся соответствующие заготовке и каждому технологическому переходу значения элементов припуска.
Расчет коробления заготовки производиться по формуле:
где: - смещение ()
- коробление ()
-удельная кривизна заготовки (табл. 4.8 [2])
для чернового – 6%;
для чистового – 4%;
для тонкого – 2%.
Расчет погрешности установки:
где: -погрешность закрепления (табл. 4.13 [2]);
l-расстояние между отверстиями на которые устанавливаются пальцы
Smax выбирается по посадке ø
Расчет минимальных значений припусков производим по формуле:
При черновом растачивании:
При чистовом растачивании:
При тонком растачивании:
Расчетный размер заполняем, начиная с конечного размера
В соответствующую графу заносим значения допусков на каждый переход и заготовку.
Вычисляем наименьшие предельные размеры:
Придельные значения припусков определяются как разность предельных размеров предшествующего и выполняемого переходов:
Производим проверку правильности расчетов:
Таблица 2.Припуски на диаметральный размер ø 72Н7
Переходы обработки поверхности | Элементы припуска | Расчетный припуск, мкм | Расчетный размер, мм | Допуск | Предельный размер | Предельный припуск | |||||
Rz | H(Т) | min | max | min | max | ||||||
Заготовка | 600 | - | 1202,7 | - | - | 68,007 | 1400 | 66,61 | 68,01 | - | - |
Черновое растачивание | 50 | - | 72,162 | 138,3 | 3621,25 | 71,629 |
Н12 300 |
71,32 | 71,62 | 3,61 | 4,71 |
Чистовое растачивание | 30 | - | 48,11 | - | 244,324 | 71,873 |
Н9 74 |
71,796 | 71,87 | 0,25 | 0,476 |
Тонкое растачивание | 20 | - | 24,05 | 6,91 | 157,207 | 72,03 |
Н7 30 |
72 | 72,03 | 0,16 | 0,204 |
Рис. 1. Схема графического расположения припусков и допусков
5.2. Назначение припусков по нормативам
Для назначения припусков и допусков воспользуемся ГОСТ 26645-85.
Таблица 3.рипуски и допуски на отливку
Размер детали мм |
Ra мкм |
Маршрут обработки |
Припуск на сторону, мм |
Допуск, мм |
Размер заготовки, мм |
ø36 | 12,5 | черновая | 1,4 | 1,1 | ø32,2 |
22 | 6,3 | черновая | 1,3 | 1 | 23,3 |
55 | 6,3 | черновая | 1,4 | 1,2 | 56,4 |
60 | 6,3 | черновая | 1,4 | 1,2 | 61,4 |
118 | 6,3 | черновая | 1,7 | 1,6 | 121,4 |
6. Определение режимов резания
6.1. Расчет режимов резания на две операции
6.1.1. Фрезерование
Операция 015, фрезерование.
Глубина резания
Подача на черновое фрезерование [4]
Фреза твердосплавная Т15К6 ø160,
Скорость резания
где: - диаметр фрезы (160мм)
- стойкость фрезы (240мин)
- припуск (1,3мм)
- подача (0,2мм/зуб)
- ширина фрезеруемой поверхности (36 мм.)
- число зубьев фрезы (14 шт.)
Из нормативов выбираем коэффициенты [4]:
По рассчитанной скорости резания определяем число оборотов шпинделя:
Расчетное значение n корректируем по паспорту станка. Принимаем:
Принимаем
6.1.2. Сверление
Операция 020.
Глубина резания
Подача при сверлении стали [4]:
Скорость резания:
Находим коэффициенты по нормативам [4]:
По рассчитанной скорости определяем число оборотов шпинделя:
Находим фактическую частоту:
6.2. Назначение режимов резания по нормативам.
· Фрезерование плоскости
;
· Фрезерование боковой плоскости
· Предварительное растачивание
· Чистовое растачивание
· Расточка канавок
· Сверление
· Нарезание внутренней резьбы метчиком
Резьба М8, шаг – 1,25 мм
· Фрезерование пазов
· Тонкое растачивание
7. Расчет и назначение норм времени
7.1. Расчет штучного времени
На две операции штучное время рассчитываем поэлементно по формуле:
где: - основное время
- вспомогательное время
- время перехода
- число деталей в партии
На остальные операции время рассчитываем по приближенной формуле:
Сверлильная операция
Фрезерная операция
Расточная операция
Расчет норм времени сводим в таблицу 4.
Для фрезерной операции
Для сверлильной операции
Основное время в операции 015 состоит из двух составляющих: фрезерование + сверление
Вспомогательное время выбираем из нормативов [1]:
Операция 015:
Установка и снятие – 0,15 мин
Управление станком – 0,1 мин
Время на измерение – 0,16 мин
Операция 020:
Установка и снятие – 0,15 мин
Управление станком – 0,1 мин
Время на измерение – 0,32 мин
Время на обслуживание
7.2. Расчет числа станков на операции
где: - такт выпуска
Коэффициент загрузки определяем по формуле:
Результаты расчетов сведены в таблицу 4.
Таблица 4.
№ |
, 100% |
|||||||||||||
015 | 0,975 | 0,15 | 0,1 | 0,16 | 1,385 | 0,09 | 0,09 | 1,565 | 20 | 415 | 1,613 | 0,195 | 1 | 19,5 |
020 | 0,133 | 0,15 | 0,1 | 0,32 | 0,703 | 0,05 | 0,05 | 0,803 | 20 | 415 | 0,851 | 0,103 | 1 | 10,3 |
025 | 0,286 | 0,526 | 0,06 | 1 | 6,36 | |||||||||
030 | 0,55 | 1,012 | 0,12 | 1 | 12,2 | |||||||||
0,24 | 0,78 | 0,09 | 9,42 | |||||||||||
0,36 | 1,17 | 0,14 | 14,1 | |||||||||||
0,033 | 0,108 | 0,013 | 1,305 | |||||||||||
0,073 | 0,238 | 0,029 | 2,87 | |||||||||||
0,007 | 0,022 | 0,003 | 0,26 | |||||||||||
0,4 | 0,7 | 0,085 | 8,46 | |||||||||||
0,048 | 0,084 | 0,01 | 1,015 | |||||||||||
035 | 0,133 | 0,245 | 0,03 | 1 | 2,96 | |||||||||
040 | 0,6 | 1,95 | 0,23 | 1 | 23,56 |
При данной загрузке оборудования будет простаивать длительное время.
7.3. Уточнение типа производства
После расчета норм времени уточняем тип производства по коэффициенту серийности.
так как ,то данное производство является среднесерийным.
Литература:
1. Горбацевич А.Ф., Шкред В.А. Курсовое проектирование по технологии машиностроения. Мн.: Высшая школа, 1983.
2. Солнышкин Н.П. и др. Технологические процессы в машиностроении. – СПбГТУ. 1998г.
3. Общемашиностроительные нормативы режимов резания для технологического нормирования работ на металлорежущих станках. – М. Машиностроение, 1974.
4. Справочник технолога машиностроителя / под ред. А.Г. Косиловой, Р.К. Мещерякова. – М.: Машиностроение, 1974 – Т1, 2.
5. Общемашиностроительные нормативы времени. – М. Машиностроение, 1980.