Дипломная работа: Технологический процесс изготовления корпуса клиноплунжерного патрона

Содержание:

Введение

1. Анализ состояния вопроса

2. Выбор типа производства и стратегии производственного процесса

3. Выбор и проектирование заготовки

4. Разработка технологического маршрута и плана изготовления

5. Выбор средств технологического оснащения

6. Разработка технологических операций

7. Экономическая эффективность проекта

Заключения

Список литературы

Приложения


Введение

Цель квалификационного проектирования по технологии машиностроения - научится правильно применять теоретические знания, полученные в процессе учебы, использовать свой практический опыт работы на машиностроительных предприятиях для решения профессиональных технологических и конструкторских задач.

Целью данной работы является снижение трудоемкости изготовления вала путем разработки прогрессивного технологического процесса, базирующегося на современных достижениях в области станкостроения и инструментального производства.

К мероприятиям по разработке новых прогрессивных технологических процессов относится и автоматизация, на ее основе применения высокопроизводительного технологического оборудования, применения режущего инструмента, быстродействующими средствами.

В квалификационной работе должна отображаться экономия затрат труда, материала, энергии. Решение этих вопросов возможно на основе наиболее полного использования возможностей прогрессивного технологического оборудования и оснастки, создания гибких технологий.


1. Анализ состояния вопроса

 

1.1 Служебное назначение детали

 

Корпус предназначен для установки на нем деталей, из которых состоит клиноплунжерный патрон. Поверхность 13 (рисунку 1- эскиз детали) служит для базирования заготовок, а именно фланцев крепления карданного вала к валу привода переднего моста. На эту же поверхность устанавливается контрольная оправка. Фиксирование заготовки производится посредством 3-х кулачков, которые перемещаются по пазам в патроне, посредством перемещения штока, на котором выполнены специальные пазы. Сам шток перемещается по поверхности 34, он фиксируется сегментной шпонкой, которая перемещается по пазу поверхность 39. Перемещение штока производится посредством соединения винт-гайка.

Клиноплунжерный патрон работает с довольно большими нагрузками и изгибающими моментами и, поэтому, требует специальной термообработки. Следует учитывать трение скольжения на поверхностях детали.

На рисунке 1 представлен эскиз детали, а в таблице 1 классификация ее поверхностей.


Таблица 1 - Классификация поверхностей детали

Вид поверхности

№ поверхностей

Исполнительные поверхности 6, 13
Основные конструкторские базы (ОКБ) 1, 29, 34, 36
Вспомогательные конструкторские базы (ВКБ) 25,27,28,31,32,33,40,41,46
Свободные поверхности остальные

Материал корпуса – сталь 19ХГН по по ТУ 14-1-261-72, имеющая следующий химический состав: углерода С= 0,16…0,21%, кремния Si= 0,17…0,37%, марганца Mn= 0,7 … 1,1%, хрома Cr= 0,8…1,1%, никеля Ni=0,8…1,1%. [1].

Механические свойства при Т=20 oС материала 19ХГН: σв =1180-1520МПа, σт =930МПа, НRCэ после цементации 59…63, обрабатываемость резанием – хорошая, Кv = 1,0. Исходя из служебного назначения корпуса при разработке технологического процесса ее изготовления, особое внимание следует уделить исполнительным поверхностям Ø25(пов.13), торцу (пов.6), а также к основным конструкторским базам: торцу (пов.1), конусной поверхности Ø82,563 (пов.29), отверстию Ø18 (пов.34) и отверстию Ø12Н7 (пов.36).

 

1.2 Технологичность конструкции детали

Рабочий чертеж корпуса содержит необходимую графическую информацию для полного представления о конструкции. Указаны размеры с их отклонениями, проставлена требуемая шероховатость, большинство отклонений от правильных геометрических форм.

К недостаткам чертежа можно отнести допуск размера Ø82-0,2, для того чтобы в последствии использовать эту поверхность в качестве базы, назначаем новый допуск под шлифовальную операцию Ø82-0,01.

В основном деталь технологична и позволяет применить прогрессивные методы обработки (точение, шлифование и т. д.) с использованием режущего инструмента, оснащенного твердым сплавом.


2. Выбор типа производства и стратегии производственного процесса

 

Тип производства зависит от годовой программы выпуска деталей и их трудоемкости. По таблице 3.2 [21] при массе детали до 5кг (масса корпуса 4 кг) и программе 10000 деталей в год (N= 10000 дет/год – проектная ) тип производства – крупносерийное.

Для серийного производства рекомендуется групповая форма организации производства, когда запуск деталей осуществляется партиями [3]:

, (2.1)

где a- периодичность запуска деталей, при запуске раз в месяц, а = 24;

F- число рабочих дней в году, F=254.

n = 10000∙24/254 = 945дет.

С учетом типа производства предполагаем применение универсальных станков и станков с ЧПУ, универсальных и специализированных приспособлений с механизированными силовыми приводами, режущих инструментов, оснащенных сменными многогранными режущими пластинами.

 


3. Выбор и проектирование заготовки.

 

3.1 Экономическое обоснование метода получения заготовки

 

Заготовку данной детали можно получить штамповкой и прокатом [3]. Метод получения исходной заготовки выбирают по сравнительному анализу себестоимости нескольких вариантов. В данном случае с учетом того, что производство мелкосерийное, будет экономически не выгодно изготавливать дорогостоящие штампы или литейный формы, поэтому производим расчет только для проката (по ВАЗовской технологии).

Стоимость заготовки определяется по формуле [3]:

Sзаг= Q · Ci/1000 – (Q-q) ∙ SОТХ/1000 + ∑Cо.з, (3.1.2)

где Ci- базовая стоимость 1 тонны заготовок, руб;

Q- масса заготовки, кг;

SОТХ- стоимость отходов (стружки), руб/тонна;

Cо.з – стоимость отрезки штучной заготовки дисковой сегментной пилой при Тшт=3мин.

Для нашего случая:

Сi= 12000 руб/тонна – круг диаметром 140 мм (По данным ВАЗа);

Q= 15,6 кг;

SОТХ= 400 р/тонна – по данным ВАЗа;

q= 3,6 кг;

После подстановки в формулу 3.1.2.

Sзаг1 = 182,4 руб.

В качестве метода получения заготовки принимаем – прокат, ГОСТ 2590-88.

3.2 Разработка рабочего чертежа заготовки

Деталь – корпус (чертеж 06.М.15.17.10.000);

Метод получения заготовки – прокат;

Материал – сталь 19ХГН.

Масса детали – 3,6 кг.

3.2.1 Исходные данные для расчета

Масса заготовки Q= 15,6 кг;

Класс точности – Т3 (приложение 1);

Группа стали – М1 (табл.1) при средней весовой доли углерода до 0,45%, суммарной массовой доли легирующих элементов до 2%;

Группа сложности – С3 (приложение 2). Расчет: размеры описывающей фигуры (цилиндр),

диаметр – 133 мм, длина – 126 мм, масса Gцил= 15,6кг при соотношении Gдет/Gцил= 3,6/15,6= 0,23, степень сложности – С3 при соотношении в пределах 0,16…0,32.

3.2.2 Припуски на механическую обработку

Диаметр заготовки выбираем по номинальному диаметру проката, табл.2 [22].

Припуск на боковую поверхность оставляем по 2,5 мм (по ВАЗовской технологии).

Допускаемые отклонения размеров:

диаметры: Ø140 -2+0,8, табл. 2 [22];

длины: 131 -2, табл. 50 [5].

Качество наружной поверхности назначаем с учетом рекомендаций - Rz=100, Т=150мкм.

Рабочий чертеж корпуса клиноплунжерного патрона представлен на листе 1 проекта, чертеж заготовки не прилагается, т.к. заготовкой является прокат.


4. Разработка технологического маршрута и плана изготовления

 

4.1 Выбор методов обработки поверхностей корпуса

Выбор методов обработки поверхностей детали резанием выполним по типовым таблицам обработки [2] и результаты выбора сведем в таблицу 4.1 проекта. Номера поверхностей взяты с технологического чертежа корпуса (рисунок 1).

Таблица 2 - Методы обработки поверхностей корпуса

№ пов.

Точность

(квал.)

Шероховатость, Ra(мкм)

Методы обработки

1 7 0,8 Точение, точение чистовое, шлифование, шлифование чистовое
5, 13 8 1,6 Точение, точение чистовое, шлифование чистовое
6 7 0,8 Точение, точение чистовое, фрезерование, шлифование чистовое
14,19 8 1,6 Фрезерование, фрезерование чистовое
21,22,23 11 3,2 Точение, точение чистовое
24 11 6,3 Фрезерование, фрезерование предварительное
8,10 9 3,2 Точение, точение чистовое, фрезерование чистовое
25, 28 11 3,2 Сверление, зенкерование чистовое
26, 27, 45 11 6,3 Цекование чистовое
32 11 3,2 Точение, точение чистовое
33 11 3,2 Сверление, зенкерование, резьбонарезание, калибрование
38,39 11 6,3 Фрезерование, фрезерование чистовое
40,41,42,43 8 1,6 Фрезерование, фрезерование чистовое
29 6 0,8 Точение, точение чистовое, шлифование, шлифование чистовое
34, 35 8 1,6 Точение, точение чистовое, шлифование, шлифование чистовое
36 7 0,4 Сверление, зенкерование, шлифование, шлифование чистовое
44 8 1,6 Долбежная
46 8 1,6 Зенкерование, шлифование, шлифование чистовое
47 11 6,3 Сверление, зенкерование чистовое
Остальные 11 6,3 Точение, точение чистовое

Данные методы реализованы при разработке маршрута изготовления детали.

4.2 Разработка технологического маршрута изготовления корпуса

При разработке маршрута в мелкосерийном производстве придерживались следующих правил:

1.Технологические операции разрабатывали по принципу концентрации технологических переходов, т.е. как можно больше поверхностей обрабатывать с одного установа заготовки.

2.Отдавали предпочтение универсальным, координатным, станкам с ЧПУ, обеспечивающие необходимую гибкость производства.

3.Старались шире применять режущий инструмент со сменными многогранными пластинами (СМП) из твердого сплава. Для цельного инструмента (сверл и др.) рекомендуем быстрорежущую сталь Р6М5.

4.Станочные приспособления применяли со сменными установочными элементами и механизированными зажимными устройствами.

Технологический маршрут обработки представлен в таблице 3.

Таблица 3 - Технологический  маршрут изготовления корпуса

№ операции

Наименование

операции

Оборудование

(тип, модель)

Содержание операции
000 Ленточно-отрезная Ленточно-отрезной станок НДА250

Отрезать заготовку

пов. 6, 7

005 Токарно-винторезная Токарно-винторезный станок 16К20

Обдирка

пов. 2, 4, 5, 6, 10, 11, 13, 21

010 Токарно-винторезная Токарно-винторезный станок 16К20

Установ А:

Сверлить отв. 36

Расточить пов. 34, 31, 29

Точить пов. 35, 32, 30, 2, 1

Установ Б:

Точить 3, 4, 5, 6, 10, 11, 12, 13, 20, 21, 22, 23

Зенкеровать отв. 36

Расточить пов. 7, 8, 9, 16, 17, 18

 015 Универсально-фрезерная

Универсально- фрезерный станок

6Р80

Фрезеровать пов. 8, 10

Фрезеровать пов. 6, 38, 39 (3 места)

 020 Универсально-фрезерная Широкоуниверсальный фрезерный станок 676

Фрезеровать пов. 24, 42, 43 (3 места)

Фрезеровать пов.14, 19, 40, 41 (3 паза)

 025 Слесарная Стол рабочий Припилить углы. Удалить заусенцы
 030 Расточная

Координатно-расточной станок

2410

Установ А:

Сверлить пов. 25

Зенкеровать пов. 25

Сверлить 4 отв. 28

Зенкеровать 4 отв. 28

Сверлить 4 отв. 33

Зенкеровать 4 отв. 33

Установ Б:

Сверлить отв. 47

Зенкерование отв. 47,46

Цековать пов. 26, 27, 45

 035 Слесарная Стол рабочий

Удалить заусенцы. Нарезать резьбу.

Продуть резьбу

 040 ТО Печь шахтная Цементировать h 0,8…1,2. Резьбу от цементации предохранить
 045 ТО Печь шахтная

Закалить 59…63 HRCЭ

 050 Слесарная Стол рабочий Калибровать резьбу по чертежу пов. 33
055 Плоско-шлифовальная Плоско-шлифовальный станок 3731

Установ А:

Шлифовать пов. 6 (3 места)

Установ Б:

Шлифовать пов. 1

060 Кругло-шлифовальная Универсальный кругло-шлифовальный станок 3Б12 Шлифовать пов. 5, 13
065 Внутри-шлифовальная Внутри-шлифовальный станок 3А225 Шлифовать пов. 29, 34, 35, 36
070 Шлифовальная Координатно-шлифовальный станок 3СМО Шлифовать пов. 46
075 Долбежная

Долбежный станок

7А412

По чертежу паз, пов. 44
080 Слесарная Стол рабочий Припилить углы. Маркировать пазы
085 Моечная Моечная машина
090 Контрольная Контрольный стол Контроль

4.3 Выбор технологических баз

Теоретическая схема базирования выбирается в зависимости от типа детали. Для нашего случая тип детали - диск. Выбирается двойная опорная база, которая лишает заготовку 2 степеней свободы, опорная база - упор, лишающий заготовку ещё одной степени свободы и установочная база, лишающая заготовку 3 степеней свободы. Для обоснования выбранных баз составим таблицу 4.3, в которой покажем по операциям, какие базы используются на операциях.

Таблица 4 - Технологические базы

№ операции

№ опорных

точек

Наименование базы

Характер

проявления

Реализа-ция

№ обрабатываемых поверхностей

Операционные

размеры

Единство баз

Постоянство баз

явная

скрытая

естественная

искусствен-ная

1

2

3

4

5

6

7

8

9

10

11

005

1,2,3

4,5

6

Уст

ДО

О

 

+

-

+

-

+

-

+

+

+

-

-

-

 

2005

4005

5005

6005

10005

11005

13005

21005

005

005

005

005

W005

Э005

Ъ005

Ь005

 

+

 

-

010А

 

1,2,3

4,5

6

Уст

ДО

О

 

+

-

+

-

+

-

+

+

+

-

-

-

 

1010А

2010А

29010А

30010А

31010А

32010А

34010А

35010А

36010А

010А

010А

010А

010А

010А

R010А

L010А

Ь010А

 

 

+

 

-

010Б

 

1,2,3

4,5

6

Уст

ДО

О

 

+

-

+

-

+

-

+

+

+

-

-

-

 

3010Б

4010Б

5010Б

6010Б

7010Б

8010Б

9010Б

10010Б

11010Б

12010Б

13010Б

16010Б

17010Б

18010Б

20010Б

21010Б

22010Б

23010Б

36010Б

010Б

010Б

010Б

010Б

010Б

010Б

U010Б

Я010Б

m010Б

h010Б

F010Б

x010Б

W010Б

Э010Б

Ъ010Б

Ь010Б

 

+

 

-

015

1,2,3

4,5

6

Уст

ДО

О

 

+

-

+

-

+

-

+

+

+

-

-

-

 

6015

8015

10015

38015

39015

Ш015

Щ015

U015

Ъ015

 

+

 

+

030А

1,2,3

4,5

6

Уст

ДО

О

 

+

-

+

-

+

-

+

+

+

-

-

-

 

25030А

28030А

33030А

030А

030А

030А

030А

030А

f030А

N030А

Ю030А

 

-

 

+

030Б

1,2,3

4,5

6

Уст

ДО

О

 

+

-

+

-

+

-

+

+

+

-

-

-

 

26030Б

27030Б

45030Б

46030Б

47030Б

030Б

030Б

030Б

030Б

030Б

Q030Б

e030Б

j030Б

 

-

 

+

055А

 

1,2,3

4,5

6

Уст

ДО

О

+

-

+

-

+

-

+

+

+

-

-

-

6055А

 

Ъ055А

 

+

 

+

055Б

1,2,3

4,5

6

Уст

ДО

О

+

-

+

-

+

-

+

+

+

-

-

-

1055Б

 

Ь055Б

 

+

 

+

060

1,2,3

4,5

6

Уст

ДО

О

+

-

+

-

+

-

+

+

+

-

-

-

5060

13060

 

060

060

 

 

+

 

+

065

1,2,3

4,5

6

Уст

ДО

О

+

-

+

-

+

-

+

+

+

-

-

-

29065

34065

35065

36065

065

065

065

R065

 

+

 

+

070

1,2,3

4,5

6

Уст

ДО

О

+

-

+

-

+

-

+

+

+

-

-

-

46070

070

e070

 

 

-

 

+

075

1,2,3

4,5

6

Уст

ДО

О

+

-

+

-

+

-

+

+

+

-

-

-

44075

075

Г075

k075

 

+

 

+

Примечание: в таблице 4 двойная направляющая база обозначается буквами ДН, опорная – О, установочная – буквами Уст, двойная опорная – ДО.

В качестве черновых технологических баз на первой операции ТП выбираем цилиндрическую поверхность 2 и торец 1, т.к. для обеспечения точности диаметральных размеров и взаимного расположения цилиндрических поверхностей поверхность 2 подходит лучше всех благодаря своим линейным размерам, обеспечивая устойчивое положение заготовки в приспособлении в радиальном направлении. В дальнейшем она будет обработана согласно требованиям чертежа.

Чистовыми базами на токарных операциях 010А, 035 служат:

скрытая технологическая база – ось пов.5, реализуемая при установке заготовки поверхностью 5 в самоцентрирующее устройство;

явная база- торец 6, реализуемая при его контакте с установочным элементом приспособления.

Чистовыми базами на токарных операциях 010Б служат:

скрытая технологическая база – ось пов.29, реализуемая при установке заготовки поверхностью 29 в самоцентрирующее устройство;

явная база- торец 1, реализуемая при его контакте с установочным элементом приспособления.

При фрезеровании детали базами являются:

 скрытая технологическая база – ось пов.29, реализуемая при установке заготовки поверхностью 29 в самоцентрирующее устройство;

 явная база - торец 1, реализуемая при его контакте с установочным элементом приспособления (такие же, что и на токарной операции).

При растачивании детали, операция 030А, базами являются:

скрытая технологическая база – ось пов.10, реализуемая при установке заготовки поверхностью 10 в самоцентрирующее устройство;

явная база - торец 21, реализуемая при его контакте с установочным элементом приспособления.

При растачивании детали, операция 030Б, базами являются:

скрытая технологическая база – ось пов.29, реализуемая при установке заготовки поверхностью 29 в самоцентрирующее устройство;

 явная база- торец 1, реализуемая при его контакте с установочным элементом приспособления.

При шлифовании детали базами являются:

скрытая технологическая база – ось пов.5(29), реализуемая при установке заготовки поверхностью 5(29) в самоцентрирующее устройство;

явная база - торец 6(1), реализуемая при его контакте с установочным элементом приспособления (такие же, что и на токарной операции).

На долбежной операции 075 чистовыми базами служат:

скрытая технологическая база – ось пов.5, реализуемая при установке заготовки поверхностью 5 в самоцентрирующее устройство;

 явная база - торец 6, реализуемая при его контакте с установочным элементом приспособления (такие же, что и на токарной операции).

Такой выбор баз наряду с точностью изготовления корпуса обеспечивает требования взаимного расположения его поверхностей.

Условные обозначения принятых черновых и чистовых технологических баз в теоретических схемах базирования на различных операциях ТП изготовления корпуса приведены в плане изготовления (лист 2).

4.4 Назначение операционных технических требований

Технические требования на обработку детали назначаем по таблицам статистической точности размеров и пространственных отклонений [4], исходя из вида обработки, применяемого оборудования, способа обеспечения точности и длины (диаметра) обработки детали.

Технические требования на выполнение технологических операций включают в себя требования к шероховатости, технологические допуски на размеры, форму и расположение поверхностей.

При этом необходимо соблюдать условие:

TAОП ≥ wcтАОП, (4.4.3)

где TAОП – операционный операционный допуск на параметр А;

wcтАОП – величина погрешности параметра А, которая может

возникнуть на данной операции при нормальном состоянии

технологической системы (статистическая погрешность).

При назначении операционных допусков на размеры необходимо придерживаться следующих правил:

1)         допуск на размер между измерительной базой и обработанной поверхностью ТАОП складывается из статистической погрешности получения размера wАопст, пространственных отклонений измерительной базы D и погрешности базирования εБА от несовпадения технологической и измерительной баз (в случае несовпадения баз):

TAОП = wcтАОП+ D+ εБА, (4.4.4)

2)         допуск на размер между поверхностями, обработанными с одного установа включает в себя только одну величину статической погрешности.

3)         операционные допуски на размеры замкнутых поверхностей складываются из статических погрешностей выполняемых размеров.

Технические требования вносим в графу 4 плана изготовления.

4.5 Оформление технологической документации

Технологическая документация представлена в приложении.


5. Выбор средств технологического оснащения

При выборе типа и модели металлорежущих станков будем руководствоваться следующими правилами:

1)      Производительность, точность, габариты, мощность станка должны быть минимальными достаточными для того, чтобы обеспечить выполнение требований предъявленных к операции.

2)      Станок должен обеспечить максимальную концентрацию переходов на операции в целях уменьшения числа операций, количества оборудования, повышения производительности и точности за счет уменьшения числа перестановок заготовки.

3)      В случае недостаточной загрузки станка его технические характеристики должны позволять обрабатывать другие детали, выпускаемые данным цехом, участком.

4)      В серийном производстве следует применять преимущественно универсальные станки, револьверные станки, станки с ЧПУ, многоцелевые станки (обрабатывающие центры). На каждом станке в месяц должно выполняться не более 40 операций при смене деталей по определенной закономерности.

При выборе приспособлений будем руководствоваться следующими правилами :

а)      Приспособление должно обеспечивать материализацию теоретической схемы базирования на каждой операции с помощью опорных и установочных элементов.

б)      Приспособление должно обеспечивать надежное закрепление заготовки при обработке.

в)      Приспособление должно быть быстродействующим.

г)       Зажим заготовки должен осуществляться, как правило, автоматически.

д)      Следует отдавать предпочтение стандартным, нормализованным, универсально-сборным приспособлениям, и только при их отсутствии проектировать специальные приспособления.

При выборе РИ будем руководствоваться следующими правилами:

1)        Выбор инструментального материала определяется требованиями, с одной стороны, максимальной стойкости, а с другой минимальной стоимости.

2)      Следует отдавать предпочтение стандартным и нормализованным инструментам.

При выборе средств контроля будем руководствоваться следующими правилами:

1)  Точность измерительных инструментов и приспособлений должна быть существенно выше точности измеряемого размера, однако неоправданное повышение точности ведет к резкому удорожанию.

2)  В серийном производстве следует применять инструменты общего назначения: штангенциркули, микрометры, длинномеры и т.д, реже – специального назначения.

3)  Следует отдавать предпочтение стандартным и нормализованным средствам контроля.

Результаты выбора средств технологического оснащения заносим в таблицу 5.

Таблица 5 - Выбор СТО

Операция Оборудование Приспособление РИ Контроль
1 2 3 4 5

005

Токарно-винторезная

Токарно-винторезный станок 16К20 Патрон трехкулачковый самоцентрирующий Резец проходной, подрезной

Пробки, калибры,

скобы

010

Токарно-винторезная

Токарно-винторезный станок 16К20 Патрон трехкулачковый самоцентрирующий Резец проходной, расточной, отрезной, подрезной со сменными пластинами, резец спец. канавочный, резец фасонный, зенкер, сверло Пробки, калибры, скобы, шаблоны, приспособление для контроля размеров и непараллельности
015 Универсально-фрезерная

Широко-

универсальный фрезерный станок

675

Специальные приспособления Фрезы для концевого фрезерования

Шаблоны, калибры,

мерительные приспособления

020 Универсально-фрезерная

Широко-

универсальный фрезерный станок

676

Специальные приспособления, делительная головка Фрезы для концевого фрезерования Пробки, калибры, скобы, шаблоны

030

Расточная

Координатно-расточной станок

2410

Специальные приспособления Сверла, зенкеры, цековки

Шаблоны, калибры,

мерительные приспособления

055

Плоско-шлифовальная

Плоско-шлифовальный станок 3731 Патрон трехкулачковый самоцентрирующий Шлифовальный круг

Шаблоны, калибры,

мерительные приспособления

060

Кругло-шлифовальная

Универсальный кругло-шлифовальный станок 3Б12 Специальные приспособления Специальные шлифовальные круги

Шаблоны, калибры,

мерительные приспособления

065

Внутри-шлифовальная

Внутри-шлифовальный станок 3А225 Патрон трехкулачковый самоцентрирующий Шлифовальные круги

Шаблоны, калибры,

мерительные приспособления

070

Шлифовальная

Координатно-шлифовальный станок 3СМО Специальные приспособления Шлифовальный круг

Шаблоны, калибры,

мерительные приспособления

075

Долбежная

Долбежный станок

7А412

Специальные приспособления Специальный долбяк Калибры, скоба гладкая, мерительные приспособления

6. Разработка технологических операций

Разработка универсально-фрезерной операции

6.1 Выбор станка

Окончательно принимаем широкоуниверсальный инструментальный фрезерный станок 676 [5], с универсальной делительной головкой УДГ-Д-250.

Размер рабочей поверхности стола – 250 х 630 мм;

Пределы частоты вращения шпинделей, об/мин :

горизонтального - 50...1630

вертикального - 63...2040

Конус отверстия шпинделей – 40;

Габаритные размеры стола – 1200х1225х1758 мм;

Мощность главного электродвигателя – 2,2 квт;

6.2 Выбор последовательности позиций

1. Фрезеровать 1, 2, 3 пазы 20+0,2 (пов. 14, 19), выдерживая размер 4,4 +0,08 (пов. 40, 41). 3 позиции.

2. Фрезеровать пов. ø20,5-0,1*30 мм (пов. 24), выдерживая размер 4,5-0,12 (пов. 42, 43 и пов. 40, 41). 6 позиций.

6.3 Выбор режущего инструмента

 

Вид и размеры режущего инструмента определим по справочнику [5]:

Т1 – шпоночная фреза из быстрорежущей стали, с цилиндрическим хвостовиком, ГОСТ 9140 - 68, Р6М5, Ø4 мм.

Т2 – полукруглая вогнутая фреза из быстрорежущей стали, ГОСТ 9305 – 69, Р6М5, Ø40 мм.

6.4 Расчет режимов резания

Режимы резания рассчитаем по методике [5].

Переход 1.

Позиции 1-3 .Фрезерование паза 20· 4,4· 6,5мм (l· b· h).

Глубина резания t= 3мм.

Подача на один зуб Sz = 0,1 мм/зуб, S = 0,1∙2=0,2 мм/об.

Скорость резания:

V=(Cv∙Dqv/Tm∙txv∙Szyv∙Buv∙zpv)∙Kv, (6.1)

где Cv, q, m, y, x, y, u, p – коэффициент и показатели степени, зависящие от условий обработки. При фрезеровании стали с σв= 1180 - 1520МПа фрезой из стали Р6М5, Cv= 46,7, q= 0,45, х=0,5, y=0,5, u=0,1, р=0,1, m=0,33

[5, стр.442, табл.37];

D – диаметр инструмента;

Т – стойкость инструмента;

S – подача, мм/зуб.

Коэффициент Kv рассчитывается:

Kv= Kмv∙ Knv∙ Kuv , (6.2)

где Kмv= См( 750/σв )nv= 1( 750/1350 )0,9= 0,6 – учитывает качество обрабатываемого материала;

 Knv – учитывает состояние поверхности заготовки,

Knv= 0,9;

Kuv – учитывает инструментальный материал;

Kuv= 0,3;

Kv= 0,6∙ 0,9∙ 0,3= 0,162.

V= 46,7∙ 40,45 ∙0,162/600,33 ∙30,5∙0,10,5∙40,1∙ 20,1= 5,42 м/мин.

Частота вращения шпинделя:

n= 1000∙V/ π∙d= 1000∙ 1,4/ 3,14∙4= 432 об/мин,

по станку nст= 450об/мин, Vф= 6 м/мин, Sм= 150мм/мин.

Мощность резания определяют по формуле[5]:

, (6.3)

где Pz – сила резания, который рассчитывают по формулам:

,                                      (6.4)

здесь SZ – подача на один зуб инструмента, равная s/z ,где z – число зубьев фрезы;

,

При фрезеровании стали σв= 1350МПа фрезой из стали Р6М5 Cр = 68,2, х=0,86, y=0,72, u=1, w=0, q= 0,86 [5, стр.444, табл.39];


Примечание: на операции используется СОЖ Афтокат Ф-40 или ВЕЛС1, ВЕЛС 1М(4…5%).

Переход 2.

Позиции 1-6 .Фрезерование поверхности 32 мм.

Глубина резания t= 2,25мм.

Подача на один зуб Sz = 0,12 мм/зуб, S = 0,12∙15=1,8 мм/об.

Скорость резания:

V=(Cv∙Dqv/Tm∙txv∙Szyv∙Buv∙zpv)∙Kv, (6.1)

где Cv, q, m, y, x, y, u, p – коэффициент и показатели степени, зависящие от условий обработки. При фрезеровании стали с σв= 1180 - 1520МПа фрезой из стали Р6М5, Cv= 44, q= 0,45, х=0,3, y=0,2, u=0,1, р=0,1, m=0,33

[5, стр.442, табл.37];

D – диаметр инструмента;

Т – стойкость инструмента;

S – подача, мм/зуб.

Коэффициент Kv рассчитывается:

Kv= Kмv∙ Knv∙ Kuv , (6.2)

где Kмv= См( 750/σв )nv= 1( 750/1350 )0,9= 0,6 – учитывает качество обрабатываемого материала;

 Knv – учитывает состояние поверхности заготовки,

Knv= 0,9;

Kuv – учитывает инструментальный материал;

Kuv= 0,3;

Kv= 0,6∙ 0,9∙ 0,3= 0,162.

V= 44∙400,45 ∙0,162/ 600,33 ∙2,250,3∙0,120,2∙8,50,1∙ 150,1= 7,2 м/мин.

Частота вращения шпинделя:

n= 1000∙V/ π∙d= 1000∙ 7,2/ 3,14∙4= 573 об/мин,

по станку nст= 600об/мин, Vф= 8 м/мин, Sм= 200мм/мин.

Мощность резания определяют по формуле[5]:

, (6.3)

где Pz – сила резания, который рассчитывают по формулам:

,                                      (6.4)

здесь SZ – подача на один зуб инструмента, равная s/z ,где z – число зубьев фрезы;

,


При фрезеровании стали σв= 1350МПа фрезой из стали Р6М5 Cр = 47, х=0,86, y=0,72, u=1, w=0, q= 0,86 [5, стр.445, табл.39];

Примечание: на операции используется СОЖ Афтокат Ф-40 или ВЕЛС1, ВЕЛС 1М(4…5%).

6.5 Расчет норм времени

Время выполнения технологической операции в серийном производстве оценивается штучно-калькуляционным временем, рассчитываем по формуле [3]:

Тш.к = Тп.з/n + Тшт , (6.5)

где Тп.з – подготовительно-заключительное время, мин;

n – размер партии для запуска (см.раздел 1);

Тшт – штучное время обработки, мин.

Тшт = То + Твс + Тт.о + Тот , (6.6)

где То – основное время обработки в мин;

Твс – вспомогательное время, мин;

Тт.о – время технического обслуживания, мин;

Тот – время на отдых и личные надобности.

Основное время обработки определяется:

То = lр.х/Sм , (6.7)

где lр.х – длина рабочего хода, мм;

Sм – минутная подача, мм/мин.

Длина lр.х складывается из длины обрабатываемой поверхности, lн.д – длины недохода, расстояние до начала обработки которое инструмент проходит на рабочей подаче (режет воздух), lc.х – длина схода инструмента (перебег). Данные величины взяты с чертежа наладки, рассчитываемые по схеме обработки и нормативам.

 Вспомогательное время складывается из времени на установку, закрепление и снятие заготовки (по нормативам), времени индексации (для агрегатных операций) и из времени холостого хода (по чертежу наладки).

Сумма времен То + Твс называется временем цикла или оперативным:

Топ = То + Твс. (6.8)

Времена Тт.о и Тот по нормативам принимается 7% от Топ.

Расчет:

Переход 1

1-3 позиции: То =3* lр.х/Sм = 3*43/100 =1,29мин, Твс =3*(0,15 + 0,2) = 1,05мин;

Переход 2

1-6 позиции: То =6* lр.х/Sм = 6*36/200 = 1,08мин, Твс = 6*(0,2 + 0,2) = 2,4мин;

Оперативным временем операции считается наибольшее из оперативных времен на каждой позиции.

Переход 1


Переход 2

 

Основное время на операции: Тоопер = 2,37 мин.

Вспомогательное время на операции: Твс = 3,5мин.

Время на техническое обслуживание и отдых будет составлять

Тт.о + Тот = 0,07∙( То+ Твс ) = 0,07∙5,87 = 0,41мин.

Штучно-калькуляционное время будет равно

Тп.з = 20мин, n= 47шт/месяц, Тшт = 6,28мин.

Тш.к = Тп.з /n + Тшт = 40/47 + 6,28 = 7,13мин.

Принимаем Тш.к = 7,1мин.

Результаты расчетов представлены на чертеже наладки и операционной карте (см. приложение).


7. Экономическая эффективность проекта

 

7.1 Исходные данные для экономического обоснования сравниваемых вариантов по всему технологическому процессу

Структуру штучного времени по операциям технологического процесса представим в виде (табл. 7.9; 7.10).

Таблица 6 - Структура штучного времени по операциям технологического процесса

Наименование показателей (время, мин) Номера операций технологического процесса
1 2 3 4 5 6 7 8 9

 

Машинное 0,1 0,3 0,15 0,1 0,01 0,2 0,2 0,1 0,02

 

Вспомогательное 0,25 0,5 0,33 0,25 0 0,42 0,42 0,25 0

 

Штучное 2 2,8 1,25 0,1 0,067 0,4 0,42 0,2 0,05

 

Наименование Номера операций технологического процесса
11 13 14 15 16 17 18 19
Машинное 0,1 0,09 0,1 0,25 0,1 0,3 0,15 0,25
Вспомогательное 0,33 0,17 0,25 0,42 0,5 0,5 0,25 0,5
Штучное 0,33 0,033 0,27 0,45 0,6 1,33 0,45 1

Таблица 7 - Структура штучного времени по операциям технологического процесса (проектный вариант)

Наименование показателей (время, мин) Номера операций технологического процесса

 

1 2 3 4 5 6 7 ТО

 

Машинное 0,15 0,9 0,15 2,37 0,02 0,2 0,02

 

Вспомогательное 0,3 1,2 0,33 3,5 0 0,42 0

 

Штучное 2 3 1,25 6,28 0,05 0,4 0,05

 

Наименование Номера операций технологического процесса

 

ТО 10 11 12 13 14 15 16

 

Машинное 0,02 0,1 0,25 0,1 0,15 0,3 0,02

 

Вспомогательное 0 0,25 0,42 0,5 0,25 0,5 0

 

Штучное 0,05 0,27 0,45 0,6 0,45 1,5 0,05

 

Стоимость приспособлений в % от себестоимости оборудования 3,5 3,5 3,5 3,5 15 5 5 4,5 15
Цена ед. инструмента, т.руб. 32,2 32,2 32,2 32,2 15 34,6 34,6 32,2 15
Установленная мощность электродвигателей станка, кВт 11 11 11 11 0,75 15 15 14 0,75
Наименование Номера операций
Цена ед. оборудования, т.руб. 223 223 675 720 450 450 670 975

Занимаемая площадь, м2

8,1 8,1 8,9 8,9 8,1 8,1 7,3 11,2
Стоимость приспособлений в % от себестоимости оборудования 3,5 3,5 4,5 5 4,5 4,5 4,5 5,5
Цена ед. инструмента, т.руб. 32,2 32,2 57,7 55 34,6 34,6 48,9 84,4
Установленная мощность электродвигателей станка, кВт 11 11 15 15 15 15 14 16

Исходные данные по оборудованию, оснастке и инструменту представим в виде (таблица 8; 9).


Таблица 8 - Исходные данные по оборудованию, оснастке и инструменту (базовый вариант)

Наименование показателей Номера операций
1 2 3 4 5 6 7 8 9
Цена ед. оборудования, т.руб. 223 223 223 223 10 570 570 415 10

Занимаемая площадь, м2

8,1 8,1 8,1 8,1 4,2 8,9 8,9 7,3 4,2

Таблица 9 - Исходные данные по оборудованию, оснастке и инструменту (проектный вариант)

Наименование показателей Номера операций
1 2 3 4 5 6 7
Цена ед. оборудования, т.руб. 223 223 225 225 10 570 10

Занимаемая площадь, м2

8,1 8,1 8,1 8,1 4,2 8,9 4,2
Стоимость приспособлений, т.руб. 2,8 2,8 2,8 2,8 15 5 15
Цена ед. инструмента, руб. 32,2 57,7 55 55 15 34,6 15
Установленная мощность электродвигателей станка, кВт 11 11 11 11 0,75 15 0,75
Наименование показателей Номера операций
10 11 12 13 14 15 16
Цена ед. оборудования, т.руб. 10 675 720 450 670 415 10

Занимаемая площадь, м2

4,2 8,9 8,9 8,1 7,3 7,3 4,2
Стоимость приспособлений, т.руб. 15 4,5 5 4,5 4,5 4,5 15
Цена ед. инструмента, руб. 15 57,7 55 34,6 48,9 32,2 15
Установленная мощность электродвигателей станка, кВт 0,75 15 15 15 14 14 0,75

Исходные данные для экономического обоснования сравниваемых вариантов сносим в таблицу 10.

Таблица 10

Показатели Условное обозначение Значение показателей
Базовый Проект
1 2 3 4 5
1 Годовая программа выпуска

Пг, шт

10000 10000
2 Норма штучного времени, в т.ч. машинное время

Тш, мин

Тмаш, мин

см. табл. 13.9; 13.10
3

Часовая тарифная ставка:

Рабочего-оператора-термиста

Наладчика

 

Сч, руб.

Счн, руб.

29,86

32,06

29,86

32,06

4 Годовой эффективный фонд времени рабочего

Фэр, час

1731 1731
5 Коэфф. доплаты до часового, дневного и месячного фондов

Кд

1,08 1,08
6 Коэфф. доплат за профмастерство (начиная с 3-го разряда)

Кпф

1,12 1,12
7 Коэфф. доплат за условия труда (если они вредные или тяжелые)

Ку

1,12 1,12
8 Коэффициент доплат за вечерние и ночные часы

Кн

1,2 1,2
9 Коэффициент премирования

Кпр

1,2 1,2
10 Коэффициент выполнения норм

Квн

1,0 1,0
11 Коэффициент отчисления на социальные нужды

Кс

0,26 0,26
12 Коэффициент расходов на доставку и монтаж оборуд-я

Кмонт

0,12 0,12
13 Годовая норма амортизационных отчислений (3,5…7,4)

На,%

6,7 6,7
14 Годовой эффективный фонд времени работы оборудования (при двухсменной работе)

Фэ, час

4015 4015
15 Установленная мощность электродвигателя станка

Му, кВт

см. табл. 13.11; 13.12
15 Коэффициент затрат на текущий ремонт оборудования

Кр

0,3 0,3
16 Коэфф-т одновременности работы электродвигателей (0,8…1,0)

Код

0,9 0,9
17 Коэфф-т загрузки электродвиг-ей по мощности (0,7…0,8)

Км

0,75 0,75
18 Коэфф-т загрузки электродви-ля станка по времени (0,5…0,85)

Кв

0,7 0,7
19 Коэфф-т потерь электроэнергии в сети завода (1,04..1,08)

Кп

1,05 1,05
20 Тариф платы за электроэнергию

Цэ, руб./кВт

1,35 1,35
21 КПД станка (0,7…0,95) КПД 0,8 0,8
23 Цена на изготовление единицы инструмента

Ци, руб.

см. табл.

7.11, 7.12

24 Коэфф-т, учитывающий затраты на ремонт приспособления

Кр.пр

1,5 1,5
25 Выручка от реализации изношенного приспособления

Вр.пр, руб.

20%

от цены

20%

от цены

26 Кол-во приспособлений, необходимое для производства годовой программы деталей

Нпр, шт

27 Физический срок службы приспособления (3…5 лет)

Тпр, лет

3 3
28 Расход на СОЖ

Нсм,руб./стан

300 300
29

Удельный расход воды для охлаждения на один час работы станка (0,6 м3)

Ув, м3/час

0,6 0,6
30

Тариф платы за 1 м3 воды

Цв, руб

1,6 1,6
31

Удельный расход воздуха за 1 час работы установки приспособления

(0,1…0,15 м3/час)

Усж, м3/час

0,1 0,1
32

Тариф платы за 1 м3 сжатого воздуха

Цсж, руб./м3

0,15 0,15
33 Площадь, занимаемая одним станком

Руд, м2

см. табл.

13.11, 13.12

34 Коэфф. учитывающий дополни-тельную площадь (1,5…3,0)

Кд.пл.

2,0 2,0
35

Стоимость эксплуатации 1м2 площади здания в год

Цпл, руб/м3

4500 4500
36 Норма обслуживания станков одним наладчиком (10…20 станков на одного наладчика)

Нобсл, ед

17 14
37

Специализация:

оборудование

приспособление

инструмент

унив.

унив.

унив.

универс.

универс.

универс.

38 Физический срок службы детали, если он повышается

Тд, лет

- -
39 Надежность детали (кол-во отказов/год), если она повышается -         -
40 Материал детали (заготовка, поковка, штамповка, литье)

 

Сталь 19ХГН

Прокат

Сталь 19ХГН

Прокат

41 Масса заготовки

Мз, кг

15,6 15,6
42 Вес отходов в стружку

Мотх, кг

12 12
43 Цена 1 кг материала (заготовки)

Цмат, руб./кг

20,74 20,74
44 Цена 1 кг отходов

Цотх, руб./кг

1,4 1,4
45 Коэффициент транспортно-заготовительных расходов

Ктз

1,05 1,05
46 Коэфф-т учит-щий цену отходов

Котх

0,1 0,1
47 Цеховые накладные расходы

Кцех

2,15 2,15
48 Внепроизводственные расходы

Квнепр

0,05 0,05
49 Заводские накладные расходы

Кзав

2,5 2,5

7.2 Расчет необходимого количества оборудования и коэффициентов его загрузки

Расчет необходимого количества оборудования проводим в виде таблицы 11.

Расчетное количество основного технологического оборудования по операциям технологического процесса

Таблица 11

Наименование показателя Расчетные форм. и расчет Знач. показат.
Базовый Проектн.
1 2 3 4 5
1 Расчетное количество основного технологичес-кого оборудования по операциям технологичес-кого процесса

Ноб.расч.= , шт

где Квн =1,0; m – кол. опер.

Базовый вариант:

Ноб.расч1=2*500/4015*60=0,004

Ноб.расч2 = 2,8*500/4015*60=0,006

Ноб. расч3 =1,25*500/4015*60=0,003

Ноб. расч4 =0,1*500/4015*60=0,0002

Ноб. расч5 =0,067*500/4015*60=0,00014

Ноб. расч6 =0,4*500/4015*60=0,001

Ноб. расч7 =0,42*500/4015*60=0,001

Ноб. расч8 =0,2*500/4015*60=0,0004

 Ноб. расч9 =0,05*500/4015*60=0,0001

Ноб.расч11 = 0,33*500/4015*60=0,001

Ноб. расч13 =0,033*500/4015*60=0,0001

Ноб. расч14 =0,27*500/4015*60=0,0006

Ноб. расч15 =0,45*500/4015*60=0,001

Ноб. расч16 =0,6*500/4015*60=0,0013

Ноб. расч17 =1,33*500/4015*60=0,003

Ноб. расч18 =0,45*500/4015*60=0,001

Ноб. расч19 =1*500/4015*60=0,002

Проектный вариант:

Ноб.расч1=2*500/4015*60=0,004

Ноб.расч2 = 3*500/4015*60=0,0062

Ноб. расч3 =1,25*500/4015*60=0,003

Ноб. расч4 =6,28*500/4015*60=0,013

Ноб. расч5 =0,05*500/4015*60=0,0001

Ноб. расч6 =0,4*500/4015*60=0,001

Ноб. расч7 =0,05*500/4015*60=0,0001

Ноб. расч10 =0,05*500/4015*60=0,0001

Ноб. расч11 =0,27*500/4015*60=0,0006

Ноб. расч12 =0,45*500/4015*60=0,001

Ноб. расч13 =0,6*500/4015*60=0,0013

Ноб. расч14 =0,45*500/4015*60=0,001

Ноб. расч15 =1,5*500/4015*60=0,003

Ноб. расч16 =0,05*500/4015*60=0,0001

0,004

0,006

0,003

0,0002

0,00014

0,001

0,001

0,0004

0,0001

0,001

0,0001

0,0006

0,001

0,0013

0,003

0,001

0,002

0,004

0,0062

0,003

0,013

0,0001

0,001

0,0001

0,0001

0,0006

0,001

0,0013

0,001

0,003

0,0001

2 Коэффициент загрузки оборудования

Кз = Ноб.расчоб.пр

Базовый вариант:

Кз1 = 0,004/1 = 0,004

Кз2 = 0,006/1 = 0,006

Кз3 = 0,003/1 = 0,003

Кз4 = 0,0002/1 = 0,0002

Кз5 = 0,00014/1 = 0,00014

Кз6 = 0,001/1 = 0,001

Кз7 = 0,001/1= 0,001

Кз8 = 0,0004/1= 0,0004

Кз9 = 0,0001/1 = 0,0001

Кз11 = 0,001/1 = 0,001

Кз13 = 0,0001/1 = 0,0001

Кз14 = 0,006/1 = 0,006

Кз15 = 0,001/1 = 0,001

Кз16 = 0,0013/1 = 0,0013

Кз17 = 0,003/1= 0,003

Кз18 = 0,001/1= 0,001

Кз19 = 0,002/1= 0,002

Проектный вариант:

Кз1 = 0,004/1 = 0,004

Кз2 = 0,0062/1 = 0,0062 

Кз3 = 0,003/1 = 0,003

Кз4 = 0,013/1 = 0,013

Кз5 = 0,0001/1 = 0,0001

Кз6 = 0,001/1 = 0,001

Кз7 = 0,0001/1 = 0,0001

Кз10 = 0,0001/1 = 0,0001

Кз11 = 0,0006/1 = 0,0006 

Кз12 = 0,001/1 = 0,001

Кз13 = 0,0013/1 = 0,0013

Кз14 = 0,001/1 = 0,001

Кз15 = 0,003/1 = 0,003

Кз16 = 0,0001/1 = 0,0001

0,004

0,006

0,003

0,0002

0,00014

0,001

0,001

0,0004

0,0001

0,001

0,0001

0,0006

0,001

0,0013

0,003

0,001

0,002

0,004

0,0062

0,003

0,013

0,0001

0,001

0,0001

0,0001

0,0006

0,001

0,0013

0,001

0,003

0,0001

Дополнительные исходные данные для станков с ЧПУ

Среднесуточный запуск деталей

Псут = Пг/360, шт

Базовый и проектный варианты:

Псут = 10000/360 = 1,39 →2

7.3 Расчет капитальных вложений (инвестиций)

Таблица 12

Наименование показателя Расчетные форм. и расчет Знач. показат.
Базов. Проект
1 2 3 4 5
1 Прямые капитальные вложения в основное технологичес-кое оборудование

Коб=∑Нобоб3

Коббаз=(223*0,004+223*0,006+223*0,003+223*0,0002+10*0,00014+570*0,001+570*

*0,001+415*0,0004+10*0,0001+223*0,001++223*0,0001+675*0,0006+720*0,001+450**0,0013+450*0,003+670*0,001+975*

*0,002)*103 = 10177 руб.

Кобпр=(223*0,004+223*0,0062+225*0,003++225*0,013+10*0,0001+570*0,001+10*

*0,0001+10*0,0001+675*0,0006+720*

*0,001+450*0,0013+670*0,001+415*

*0,003+10*0,0001)*103= 9862 руб.

10177 10074
2 Сопутствующие капитальные вложения
2.1 Затраты на проектирова-ние, руб.

Знир = 43343,6

- 43343
2.2 Затраты на доставку и монтаж оборудования, руб.

Км = Кобмонт, тыс. руб.

где Кмонт =0,12

Кмбаз = 10177*0,12 = 1221

Кмпр = 10074*0,12 = 1209

1221 1209
2.3 Затраты на транспортные средства, руб.

Ктроб*0,05

Ктрбаз=10177*0,05 = 509

Ктрпр=10074*0,05 =504

509 504
2.4

Затраты на дорогостоя-щие приспособле-ния,

руб.

Кпрбаз=(3,5*0,004+3,5*0,006+3,5*0,003+

+3,5*0,0002+15*0,00014+5*0,001+5*

*0,001+4,5*0,0004+15*0,0001+3,5*0,001++3,5*0,0001+4,5*0,0006+5*0,001+4,5*

*0,0013+4,5*0,003+4,5*0,001+5,5*0,002)**103 = 108 руб.

Кпрпр=(2,8*0,004+2,8*0,0062+2,8*0,003+

+2,8*0,013+15*0,0001+5*0,001+15*

*0,0001+15*0,0001+4,5*0,0006+5*0,001+

+4,5*0,0013+4,5*0,001+4,5*0,003+15*

*0,0001)*103= 116 руб.

108 116
2.5

Затраты на эксплуатацию производст-венных площадей, занятых основным технологичес-ким оборудова-нием, руб.

Кз плбаз=(8,1*0,004+8,1*0,006+8,1*0,003+

8,1*0,0002+4,2*0,00014+8,9*0,001+8,9*

*0,001+7,3*0,0004+4,2*0,0001+8,1*

*0,001+8,1*0,0001+8,9*0,0006+8,9*

*0,001+8,1*0,0013+8,1*0,003+7,3*0,001++11,2*0,002)*2*4500= 1947

Кз плпр=(8,1*0,004+8,1*0,0062+8,1*0,003+

+8,1*0,013+4,2*0,0001+8,9*0,001+4,2*

*0,0001+4,2*0,0001+8,9*0,0006+8,9*

*0,001+8,1*0,0013+7,3*0,001+7,3*0,003+

+4,2*0,0001)*2*4500= 2491

1947 2491
2.6

Затраты на демонтаж заменяемого оборудования,

руб.

Здем=(570+223+223+450+975)*

*0,1*103 = 244100

- 244100
2.7

Выручка от реализации заменяемого оборудования,

руб.

Вреал=(570+223+223+450+975)*

*0,1*103 = 122050

- 122050
2.8 Итого сопутствую-щие капитальные вложения, руб.

Ксоп = Знирм+ Ктр+ Кпр+ Кэ пл+ Здем- Вреал,

Ксоп = 0+1221+509+108+1947 =3785

Проектный вариант:

Ксоп = 43343+1209+504+116+2491+

+244100-122050= 169419

3785 169713
3 Общие капитальные вложения, руб.

Кобщ = Коб + Ксоп

Кобщбаз = 10177+3785=13962

Кобщпр =10074+169713=179787

13962 179787
4 Удельные капитальные вложения,руб.

Куд = Кобщг

28 360

7.5 Расчет технологической себестоимости по каждому из вариантов технологического процесса

Таблица 13

Наименование показателей Расчетные формулы

Значение

показат.

Базовый Проек.
1

Основые материалы за вычетом отходов, руб.

М=Мзматтз – Мзотх

М= 15,6*20,74*1,05-15,6*1,4=318

318 318
2

Основная з/п рабочих операторов, руб.

Зпл = ΣТшт/60*Сч* Ку* Кпфднпр

Зплбаз= (2+2,8+1,25+0,1+0,067+

+0,4+0,42+0,2+0,05+0,33+0,033+

+0,27+0,45+0,6+1,33+0,45+1)/60* *29,86*1,12*1,12*1,08*1,2*1,2=12

Зплпр=(2+3+1,25+6,28+0,05+0,4+

+0,05+0,05+0,27+0,45+0,6+0,45+

+1,5+0,05)/60*29,86*1,12*1,12*

*1,08*1,2*1,2=16

12 16
3

Основная зарплата наладчика, руб.

Зплнчнэру* Кпфднпр* Кзср*

общ/(Нобсг)

Зплнбаз=32,06*1731*1,12*1,12*1,08*

*1,2*1,2*0,02584*10/(14*500)= 4

Зплнпр=32,06*1731*1,12*1,12*1,08*1,2*1,2*0,0345*8/(10*500)= 6

 

 

 

4

 

 

 

6

4

Начисления на з/п, руб.

Нзпл = (Зпл.оперпл.нал)*Ксоц

Нзплбаз=(12+4)*0,26= 4

Нзплпр=(16+6)*0,26= 6

4 6
5 Расходы по содержанию и эксплуатации оборудования
5.1

Затраты на текущий ремонт обор-ия, руб.

Роб.р=(∑Нобобзштр)/Фэ*60*Квн

Роб.рбаз=(223*0,004*2+223*0,006*2,8+

+223*0,003*1,25+223*0,0002*0,1+10**0,00014*0,067+570*0,001*0,4+570*

*0,001*0,42+415*0,0004*0,2+10*

*0,0001*0,05+223*0,001*0,33+223*

*0,0001*0,033+675*0,0006*0,27+720**0,001*0,45+450*0,0013*0,6+450*

*0,003*1,33+670*0,001*0,45+975*

*0,0021*1)*0,3*103/4015*60*1= 0,018

Роб.рпр=(223*0,004*2+223*0,0062*3+

+225*0,003*1,25+225*0,013*6,28+10**0,0001*0,05+570*0,001*0,4+10*

*0,0001*0,05+10*0,0001*0,05+675*

*0,0006*0,27+720*0,001*0,45+450*

*0,0013*0,6+670*0,001*0,45+415*

*0,003*1,5+10*0,0001*0,05)*0,3*103*/ /4015*60*1= 0,038 руб.

0,02 0,04
5.2 Расходы на технологическую энергию,руб.

Рэ=(∑Мумаш)*Кодмвпэл/

КПД*60

Рэбаз=(11*2+11*2,8+11*1,25+11*0,1+

+0,75*0,067+15*0,4+15*0,42+14*0,2+

+0,75*0,05+11*0,33+11*0,033+15*

*0,27+15*0,45+15*0,6+15*1,33+14*

*0,45+16*1*0,9*0,75*0,7*1,05*1,35/

/0,8*60= 2,07

Рэпр=11*2+11*3+11*1,25+11*6,28+

+0,75*0,05+15*0,4+0,75*0,05+0,75*

*0,05+15*0,27+15*0,45+15*0,6+14*

*0,45+14*1,5+0,75*0,05*0,9*1,35*0,7*1,05*0,75/0,8*60= 3,8

2 4
5.3 Расходы на содерж-ие и эксплуат-ию присп., руб.

Рпр=(∑Цпрр.прр.пр)*Нпрз/(Тпрг)

Рпрбаз=((3,5*1,5-0,7)*0,004+(3,5*1,5-0,7)*0,006+(3,5*1,5-0,7)*0,003+ +(3,5*1,5-0,7)*0,0002+(15*1,5-3)* *0,00014+(5*1,5-1)*0,001+(5*1,5-1)* *0,001+(4,5*1,5-0,9)*0,0004+(15*1,5-

-3)*0,0001+(3,5*1,5-0,7)* 0,0007+ +(3,5*1,5-0,7)*0,0001+(4,5*1,5-0,9)* *0,006+(5*1,5-1)*0,001+(4,5*1,5-

-0,9)*0,0013+(4,5*1,5-0,9)*0,003+ +(4,5*1,5-0,9)*0,001+(5,5*1,5-1,1)* *0,002)*103/3*500 = 0,15 руб.

Рпрпр=((2,8*1,5-0,56)*0,004+(2,8*1,5-0,56)*0,0062+(2,8*1,5-0,56)*0,003+ +(2,8*1,5- 0,56)*0,013+(15*1,5-3)* *0,0001+(5*1,5-1)*0,001+(15*1,5-3)* *0,0001+(15*1,5-3)*0,0001+

+(4,5*1,5-0,9)*0,0006+(5*1,5-1)* *0,001+(4,5*1,5-0,9)*0,0013+ +(4,5*1,5-0,9)*0,001+ +(4,5*1,5-

-0,9)*0,003+ +(15*1,5-3)* 0,0001)* 103/3*500= 0,18 руб.

0,15 0,18
5.4

Расходы на смаз. матер. и СОЖ, руб.

Рсм=∑Нобсмзг

Рсмбаз=17*300*0,02584/500 = 0,26

Рсмпр=14*300*0,0345/500 = 0,3

0,26 0,3
5.5

Расходы на технологическую

воду, руб.

Рв=∑Нобзэввг

Рвбаз=17*0,02584*4015*0,6*1,6/500=

= 3,4

Рвпр=14*0,0345*4015*0,6*1,6/500=

= 3,7

3,4 3,7
5.6

Расходы на сжатый воздух, руб.

Рж=∑Нобзэсжсжг

Рсжбаз=17*0,02584*4015*0,1*0,15/500

=0,053

Рсжпр=14*0,0345*4015*0,1*0,15/500

=0,058

0,053 0,058
5.7

Расходы на содержание и эксплуата-цию произ-водственной площади, руб.

Рпл=∑Нобуддплзплг

Рплбаз=(8,1*0,004+8,1*0,006+8,1*0,003

+8,1*0,0002+4,2*0,00014+8,9*0,0008+

8,9*0,0009+7,3*0,0004+4,2*0,0001+8,1*0,0007+8,1*0,00007+8,9*0,006+8,9*

*0,00093+8,1*0,0013+8,1*0,003+7,3*

*0,001+11,2*0,0021)*2*4500/500 = 4,7

Рплпр=(8,1(0,004+0,0062+0,003+0,013)+

+4,2*0,0001+8,9*0,0008+4,2*0,0001+

+4,2*0,0001+8,9*0,0006+8,9*0,00093++8,1*0,0013+7,3*0,00093+7,3*0,003+

+4,2*0,0001)*2*4500*/500= 5

4,7 5
5.8

Расход на инструмент, руб.

Рибаз=((32,2*2-12,88+43*27,2* 0,1)/ /88+(32,2*4-25,76+69*65,2*0,3)/280+ +(32,2*1-6,44+ 28*16*0,15)/29+(32,2* *2-12,88+23*216*0,1)/120+(15*1-3+ +28*11,2*0,01)/29 +(34,6*2-13,84+62* *57,6*0,2)/31,5+(34,6*1-6,92+16*144* *0,2)/34 +(32,2*1-6,44+28*16*0,1)/29+ +(15*1-3+28*11,2*0,02)/29+(32,2*2-

-12,88+16* 144*0,1)/68+(32,2*1-6,44+ 28*16*0,09)/29+(57,7*1-11,54+16* 144*0,1)/34+(55*1-11+16*144*0,25)/ /34+(34,6*2-13,84+62*57,6*0,1)/31,5+ +(34,6*1-6,92+16* 144*0,3)/34+(48,9* *1-9,78+16*144*0,3)/34+(84,4*1-16,88+62*57,6*0,1)/31,5))/ 60 = 184,5

Рипр=((32,2*2-12,88+43*27,2* 0,15)/ /88+(57,7*1-11,54+16*144*0,9)/68+ +(55*2-22+43*27,2*0,15)/88+(55*2-

-22+23*216*2,37)/120+

+(15*1-3+28*11,2*0,02)/29+(34,6*5-

-34,6+62*57,6*0,2)/157,5+(15*1-3+28* *11,2*0,02)/29+(15*1-3+28*11,2*0,02)/ /29+(57,7*1-11,54+16*144*0,1)/34+ (55*1-11+16*144*0,25)/34+(34,6*2-

-13,84+62*57,6*0,1)/ 31,5+(48,9*1-9,78+16*144*0,25)/34+ (32,2*1-6,44+28* 16*0,09)/29+(15*1-3+28*11,2*0,02)/ 29)/60= 203

184,5 203

Итого расходы по содержанию и эксплуа-тации обору-дования, руб.

Робщр.обэпрсмвсжипл

Робщ=0,02+2+0,15+0,26+3,4+

+0,053+4,7+184,5= 195

Робщ=0,04+4+0,18+0,3+3,7+

+0,058+5+203= 216

195 216

7.6 Калькуляция себестоимости по каждому из вариантов технологического процесса

Калькуляцию себестоимости обработки деталей по вариантам технологического процесса проводим по формулам, и полученные значения заносим в (табл. 14).

Таблица 14 - Калькуляция себестоимости обработки деталей

Статьи затрат Изменения Затраты
базовый проектный
1 Материалы за вычетом отходов 0 318 318
2 Основная з/п налад-ов и операт-ов +6 16 22
3 Начисления на заработную плату +2 4 6
4 Расходы по содержанию и эксплуатации оборудования +21 195 216
Итоговая технол-ая себестоимость +29 533 562
5

Общецеховые накладные расходы

Рцехпл.оснцех

+12,9 34,4 47,3
6

Итоговая цеховая себестоимость

Сцехтехцех

+41,9 567,4 609,3
7

Заводские накладные расходы

Рзавпл.оснзав

+15 40 55
8

Итоговая заводская себестоимость

Сзавцехзав

+56,9 607,4 664,3
9

Внешнепроизводственные расходы

Рвн.произзаввн.произ

+2,85 30,37 33,22

Итоговая полная себестоимость

Сполнзаввн.произ

+55 640 695

7.7 Расчет приведенных затрат и выбор оптимального варианта технологического процесса

 

Наименование показателей Расчетные формулы Значение показателей
базовый проектный
1 Приведенные затраты на единицу оборудования, руб.

Зпр.едполннуд

Зпр.едбаз=640+0,33*28= 650 руб.

Зпр.едпр=695+0,33*360=813 руб.

650 813
2 Годовые приведенные затраты, руб.

Зпр.годпр.едг

Зпр.годбаз= 647*500=323500 руб.

Зпр.годпр= 816*500= 408000 руб.

323500 408000

7.8 Расчет показателей экономической эффективности проектируемого варианта техники (технологии)

 

Ожидаемую прибыль (условно-годовая экономия) от снижения

себестоимости обработки детали и повышения долговечности определим по формуле: Эу.г.=(СполнбазД21полнпр)*Пг,руб.;    (7.21)

где Д1 – базовая долговечность, то есть время работы изготовленной детали до первого отказа в узле машины. Д2 – проектная долговечность изготовленной детали получаемая в результате внедрения нового метода, так как при вибрационном фрезеровании, усталостные напряжения на деталь меньше, чем при обычном фрезеровании, принимаем Д2=2,5*Д1.

Определим прибыль повышения долговечности детали:

Эу.г. =(650*2,5-813)*500 = 406000 руб.

Определим налог на прибыль по формуле:

Нпру.гнал,руб.;        (7.22)

где Кнал – коэффициент налогообложения, принимаем Кнал = 0,24

Определим налог на прибыль: Нпр = 406000*0,24=97440 руб.

Определим чистую ожидаемую прибыль по формуле:


Ппрчисту.г–Нпр, руб. (7.23)

Определим чистую ожидаемую прибыль: Ппрчист= 406000-97440=308560 руб.

После определения чистой прибыли определяется расчетный срок окупаемости капитальных вложений (инвестиций), необходимых для осуществления проектируемого варианта:

Ток.расч = Квв.прпрчист =165471,6/308560 =0,54

Расчетный срок окупаемости инвестиций (капитальных вложений) принимается за горизонт расчета (максимально ожидаемое время окупаемости инвестиций), Т = 1 год.

Используя методы дисконтирования мы решаем вопрос о том, стоит ли вкладывать средства в разработанный нами проект, который в течение принятого горизонта расчета принесет дополнительную прибыль, или лучше при существующей процентной ставке на капитал положить деньги в банк.

Для этого в пределах принятого горизонта расчета (Т) необходимо рассчитать текущую стоимость будущих денежных доходов (денежных потоков), приведенных к текущему времени (времени начала осуществления проекта) через коэффициенты дисконтирования.

Общая текущая стоимость доходов (чистой дисконтированной прибыли) в течении принятого горизонта расчета определяется по формуле:

, (7.24)

где Т - горизонт расчета, лет (месяцев); Е - процентная ставка на капитал (например, при 10% Е=0,1%;при 20% Е=0,2% и т.д.); t- это 1-ый, 2-ой, 3-й год получения прибыли в пределах принятого горизонта расчета.

В результате приведенных расчетов получены следующие выходные данные: размер требуемых для осуществления проекта инвестиций равен (Квв.пр=165471,6) руб., а ежегодная ожидаемая чистая прибыль составляет

Ппрчист =308560 руб., расчетный срок окупаемости (горизонт расчета) составляет 3 года. Процентная ставка на капитал равна 20% в год (Е=0,2), то процентный фактор (дисконт) для 1 года составит: 1/(1+0,2)= 0,83, тогда ожидаемая за год общая чистая дисконтированная прибыль (текущая стоимость денежных доходов) составит:

Добщ.диск = Пр.чист.диск = 308560*0,83 = 256104,8 руб.

Определим интегральный экономический эффект по формуле:

Эинт=ЧДД=Добщ.диск – Квв.пр, (7.25)

Определим интегральный экономический эффект:

Эинт = ЧДД =256104,8-165471,6 = 90633,2 руб.

Таким образом, проект является эффективным, так как ЧДД ≥ 0

Определим индекс доходности по формуле:

ИД= Добщ.дисквв.пр,      (7.26)

Определим индекс доходности:ИД = 256104,8/165471,6 = 1,6

Технико-экономические показатели

Технические параметры проекта

Базовый Проектный
1 Количество оборудования 17 14
2 Коэффициент загрузки средний 0,02584 0,0345

 

Экономические показатели проекта

1 Годовая программа выпуска

10000
2 Себестоимость единицы изделия

640 695
3 Капитальные вложения

13962 179787
4 Приведенные затраты на единицу изделия

650 813
5 Чистая ожидаемая прибыль

308560
6 Капитальные вложения в осуществ-ление проекта

Квв.пр,руб.

165471,6
7 Срок окупаемости инвестиций

1
8 Интегральный экономический эффект (чистый дисконтируемый доход)

,

90633,2
9 Индекс доходности

1,6

Вывод

Так как ЧДД > 0, значит проект эффективен, и поэтому определяем индекс доходности, т.е. прибыль на каждый вложенный рубль:

; ИД =256104,8/165471,6 = 1,6.

Проект – эффективен, несмотря на то, что капитальные вложения на проектный вариант больше, чем на базовый, т.к. за счет увеличения долговечности детали в 2,5 раза, мы получаем чистую ожидаемую прибыль в размере 308560 руб. Прибыль на каждый вложенный рубль составляет


Заключение

В ходе работы были выполнены все задачи выпускной квалификационной работы.

Проанализировав исходные данные детали, стало возможным определение:

- выбора типа производства, формы организации технологического

 процесса изготовления детали;

- выбора метода получения заготовки;

- технологического маршрута изготовления детали;

- технологического маршрута обработки поверхности;

- технологической схемы базирования;

- припусков с помощью размерного анализа;

- припусков расчетно-аналитическим методом;

Выполнив выпускную квалификационную работу, закрепил знания о технологии машиностроения, в сфере конструирования и технологирования изделия. В результате разрабатываемый технологический проект оказался экономически эффективным.


Список литературы

1.      Марочник сталей и сплавов/В.Г. Сорокин, А.В. Волосникова, С.А. Вяткин и др.; Под общ. ред. В.Г. Сорокина. – М.: Машиностроение, 1989. – 640с.

2.      Николаев С.В. Механическая обработка: методические указания к курсовому проектированию спец. 060800, Тольятти, 2002, 30с.

3.      Горбацевич А.Ф. и др. Курсовое проектирование по технологии машиностроения – Мн.: Высш. шк., 1983, 256с.

4.      Михайлов А.В. Размерный анализ технологических процессов изготовления деталей машин: методические указания к курсовому проектированию – Тольятти: ТГУ, 2001. – 34 с.

5.      Справочник технолога-машиностроителя / под ред. А.Г. Косиловой. Т.2 – М.: Машиностроение, 1985, 496с.

6.      Справочник технолога-машиностроителя / под ред. А.Г. Косиловой. Т.1 – М.: Машиностроение, 1985, 656с.

7. Специальные металлорежущие станки общемашиностроительного применения: Справочник/ В.Б.Дьячков, Н.Ф. Кабатов, М. У. Носинов. – М.: Машиностроение. 1983. – 288 с.

8.      Кузнецов Ю.И., Маслов А.Р., Байков А.Н. Оснастка для станков с ЧПУ: Справочник. – М.: Машиностроение, 1990. – 512с.

9.      Алфавитно-предметный указатель к МКИ

10.    Международная классификация изобретений: раздел В

11.    Универсальная десятичная классификация: машиностроение

12. Гордеев А.В. Патентные исследования в курсовых и дипломных проектах: методические указания – Тольятти: ТГУ, 2001 – 23 с.

13.    Черемисин А.С. Технологические расчеты механосборочного участка – Тольятти: ТолПИ, 1984

14.    Проектирование машиностроительных цехов и заводов. Справочник т.1, 4, 6 / Под общ. ред. Ямпольского С.Е. – М.: Машиностроение, 1975

15.    Охрана труда в машиностроении: Учебник для машиностроительных вузов./ Под ред. Е.Я. Юдина, С.В. Белова – М.: Машиностроение, 1983–432 с.

16.    Мурахтанова Н.М. Методические указания к экономическому обоснованию курсовых и дипломных работ по совершенствованию технологических процессов механической обработки деталей – Тольятти, ТГУ, 2000.

17.    Станочные приспособления: Справочник. Т.1/ под. ред. Б.Н. Вардашкина, А.А. Шатилова – М.: Машиностроение, 1984 – 592с.

18. Справочник инструментальщика / И.А. Ординарцев и др. – Л.: Машиностроение, 1987 – 846с.

19. Михайлов А.В. Методические указания к выполнению дипломных проектов технологического направления – Тольятти: ТолПИ – 1988.

20. Михайлов А.В. Базирование и технологические базы: методические указания – Тольятти: ТолПИ, 1994.

21.    Михайлов А.В., Расторгуев Д.А., Схиртладзе А.Г. Основы проектирования технологических процессов механосборочного производства – Тольятти: ТГУ -2004.

22.    Раскатов В.М., Чуенков В.С., Бессонова Н.Ф., Вейс Д.А. Машиностроительные материалы. Краткий справочник. – М.: Машиностроение, 1980 – 511с.

23.    Кумабэ Д. Вибрационное резание: Под ред.И.И. Портнова, В.В. Белова.-М.: Машиностроение, 1985.- 424 с.

24.    Подураев В.Н. Обработка резанием с вибрациями. М., «Машиностроение», 1970, с. 350.

25.    Жарков И.Г. Вибрации при обработке лезвийным инструментом. - Л.: Машиностроение,1986.- 186 с., ил.

Разработка автоматизированного участка изготовления детали " ...
Министерство образования и науки Российской Федерации Зеленодольский механический колледж Разработать автоматизированный участок изготовления детали ...
ПР приспособлен для работы с накопителями заготовок и деталей, уложенных в приспособлении-спутнике в ориентированном виде (при горизонтальном расположении оси).
При работе станка шлифовальный круг на деталь или деталь на круг нужно подавать плавно, без рывков или резкого нажима.
Раздел: Промышленность, производство
Тип: дипломная работа
Технологический процесс сборки матрицы штампа холодной объемной ...
Содержание Введение 1 Технологический процесс сборки матрицы штампа холодной объемной штамповки корпуса внутреннего шарнира ВАЗ 2108 1.1 Анализ ...
Вместе с тем в базовом техпроцессе вместо одной пригоночной операции, выполняемой на шлифовальном станке, включены несколько операций, которые можно выполнить и до сборки матрицы ...
- количеством заготовок, одновременно устанавливаемых в приспособлении или на станке (одно и многоместная);
Раздел: Промышленность, производство
Тип: дипломная работа
... единичного технологического процесса изготовления детали Картер
Аннотация 6 Введение 7 1. Исходные данные 10 1.1. Базовая информация 10 1.2. Руководящая информация 11 1.3. Справочная информация 12 2. Обзор ...
Крупногабаритные заготовки, детали, узлы, приспособления станков в цехе транспортируются тельферами, кранами-балками, мостовыми кранами.
Обкатка деталей может производиться на токарных, шлифовальных, специальных накатных станках с установкой детали в центрах или патроне.
Раздел: Рефераты по технологии
Тип: реферат
Комплексный дипломный проект: ... технологических приспособлений для ...
Дубл. Взам. Подл. 1 2 Разраб. Куцак Пров Белоус Н. Контр. Трифонова М 01 Сталь 45 ГОСТ 1050-88 Код ЕВ МД ЕН Н.расх. КИМ Код загот. Профиль и размеры ...
Необходимый угол заточки пластины определяется поворотом всего приспособления на станке, а значение радиуса пластины определяется расстоянием от оси вращения вала до шлифовального ...
Гибкостью технологической системы (станок - приспособление - инструмент - заготовка) принебригаем.
Раздел: Рефераты по технологии
Тип: дипломная работа
Технологический процесс изготовления вала насоса
1. Анализ исходных данных Задача данного раздела - на базе анализа технических требований предъявляемых к детали и годового объема выпуска ...
Форма детали позволяет вести одновременную обработку нескольких поверхностей: цилиндрических- 6, 8 ,10,11 ,торцовых 1,2,4. При обработке на станке с ЧПУ сферических пов.
Теоретическая схема базирования представлена на плане изготовления детали и представляет собой схему расположения на технологических базах заготовки "идеальных" точек ...
Раздел: Промышленность, производство
Тип: дипломная работа