Реферат: Состав крови

Кровь состоит из жидкой части плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов приходится 40 – 45%, на долю плазмы – 55 – 60% от объема крови. Это соотношение получило название гематокритного соотношения, или гематокритного числа. Часто под гематокритным числом понимают только объем крови, приходящийся на долю форменных элементов.

Плазма крови

В состав плазмы крови входят вода (90 – 92%) и сухой остаток (8 – 10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся белки, которые составляют 7 – 8%. Белки представлены альбуминами (4,5%), глобулинами (2 – 3,5%) и фибриногеном (0,2 – 0,4%).

Белки плазмы крови выполняют разнообразные функции: 1) коллоидно-осмотический и водный гомеостаз; 2) обеспечение агрегатного состояния крови; 3) кислотно-основной гомеостаз; 4) иммунный гомеостаз; 5) транспортная функция; б) питательная функция; 7) участие в свертывании крови.

Альбумины составляют около 60% всех белков плазмы. Благодаря относительно небольшой молекулярной массе (70000) и высокой концентрации альбумины создают 80% онкотического давления. Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов). Альбумины синтезируются в печени.

Глобулины подразделяются на несколько фракций: a -, b - и g -глобулины.

a -Глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К a -глобулинам относятся эритропоэтин, плазминоген, протромбин.

b -Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферрин, обеспечивающий транспорт железа, а также многие факторы свертывания крови.

g -Глобулины включают в себя различные антитела или иммуноглобулины 5 классов: Jg A, Jg G, Jg М, Jg D и Jg Е, защищающие организм от вирусов и бактерий. К g -глобулинам относятся также a и b – агглютинины крови, определяющие ее групповую принадлежность.

Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах.

Фцбриноген – первый фактор свертывания крови. Под воздействием тромбина переходит в нерастворимую форму – фибрин, обеспечивая образование сгустка крови. Фибриноген образуется в печени.

Белки и липопротеиды способны связывать поступающие в кровь лекарственные вещества. В связанном состоянии лекарства неактивны и образуют как бы депо. При уменьшении концентрации лекарственного препарата в сыворотке он отщепляется от белков и становится активным. Это надо иметь в виду, когда на фоне введения одних лекарственных веществ назначаются другие фармакологические средства. Введенные новые лекарственные вещества могут вытеснить из связанного состояния с белками ранее принятые лекарства, что приведет к повышению концентрации их активной формы.

К органическим веществам плазмы крови относятся также небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатинин, аммиак). Общее количество небелкового азота в плазме, так называемого остаточного азота, составляет 11 – 15 ммоль/л (30 – 40 мг%). Содержание остаточного азота в крови резко возрастает при нарушении функции почек.

В плазме крови содержатся также безазотистые органические вещества: глюкоза 4,4 – 6,6 ммоль/л (80 – 120 мг%), нейтральные жиры, липиды, ферменты, расщепляющие гликоген, жиры и белки, проферменты и ферменты, участвующие в процессах свертывания крови и фибринолиза. Неорганические вещества плазмы крови составляют 0,9 – 1%. К этим веществам относятся в основном катионы Nа+, Са2+, К+, Mg2+ и анионы Сl-, НРО42-, НСО3-. Содержание катионов является более жесткой величиной, чем содержание анионов. Ионы обеспечивают нормальную функцию всех клеток организма, в том числе клеток возбудимых тканей, обусловливают осмотическое давление, регулируют рН.

В плазме постоянно присутствуют все витамины, микроэлементы, промежуточные продукты метаболизма (молочная и пировиноградная кислоты).

Форменные элементы крови

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.

Рис 1. Форменные элементы крови человека в мазке.

1 – эритроцит, 2 – сегментоядерный нейтрофильный гранулоцит,

3 – палочкоядерный нейтрофильный гранулоцит, 4 – юный нейтрофильный гранулоцит, 5 – эозинофильный гранулоцит, 6 – базофильный гранулоцит, 7 – большой лимфоцит, 8 – средний лимфоцит, 9 – малый лимфоцит,

10 – моноцит, 11 – тромбоциты (кровяные пластинки).

Эритроциты

В норме в крови у мужчин содержится 4,0 – 5,0х10"/л, или 4 000 000 – 5 000 000 эритроцитов в 1 мкл, у женщин – 4,5х10"/л, или 4 500 000 в 1 мкл. Повышение количества эритроцитов в крови называется эритроцитозом, уменьшение эритропенией, что часто сопутствует малокровию, или анемии. При анемии может быть снижено или число эритроцитов, или содержание в них гемоглобина, или и то и другое. Как эритроцитозы, так и эритропении бывают ложными в случаях сгущения или разжижения крови и истинными.

Эритроциты человека лишены ядра и состоят из стромы, заполненной гемоглобином, и белково-липидной оболочки. Эритроциты имеют преимущественно форму двояковогнутого диска диаметром 7,5 мкм, толщиной на периферии 2,5 мкм, в центре – 1,5 мкм. Эритроциты такой формы называются нормоцитами. Особая форма эритроцитов приводит к увеличению диффузионной поверхности, что способствует лучшему выполнению основной функции эритроцитов – дыхательной. Специфическая форма обеспечивает также прохождение эритроцитов через узкие капилляры. Лишение ядра не требует больших затрат кислорода на собственные нужды и позволяет более полноценно снабжать организм кислородом. Эритроциты выполняют в организме следующие функции: 1) основной функцией является дыхательная – перенос кислорода от альвеол легких к тканям и углекислого газа от тканей к легким;

2) регуляция рН крови благодаря одной из мощнейших буферных систем крови – гемоглобиновой;

3) питательная – перенос на своей поверхности аминокислот от органов пищеварения к клеткам организма;

4) защитная – адсорбция на своей поверхности токсических веществ;

5) участие в процессе свертывания крови за счет содержания факторов свертывающей и противосвертывающей систем крови;

6) эритроциты являются носителями разнообразных ферментов (холинэстераза, угольная ангидраза, фосфатаза) и витаминов (В1, В2, В6, аскорбиновая кислота);

7) эритроциты несут в себе групповые признаки крови.

Рис 2.

А. Нормальные эритроциты в форме двояковогнутого диска.

Б. Сморщенные эритроциты в гипертоническом солевом растворе

Гемоглобин и его соединения

Гемоглобин – особый белок хромопротеида, благодаря которому эритроциты выполняют дыхательную функцию и поддерживают рН крови. У мужчин в крови содержится в среднем 130 – 1б0 г/л гемоглобина, у женщин – 120 – 150 г/л.

Гемоглобин состоит из белка глобина и 4 молекул гема. Гем имеет в своем составе атом железа, способный присоединять или отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т.е. железо остается двухвалентным. Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин. Это соединение непрочное. В виде оксигемоглобина переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом, носит название карбгемоглобина. Это соединение также легко распадается. В виде карбгемоглобина переносится 20% углекислого газа.

В особых условиях гемоглобин может вступать в соединение и с другими газами. Соединение гемоглобина с угарным газом (СО) называется карбоксигемоглобином. Карбоксигемоглобин является прочным соединением. Гемоглобин блокирован в нем угарным газом и неспособен осуществлять перенос кислорода. Сродство гемоглобина к угарному газу выше его сродства к кислороду, поэтому даже небольшое количество угарного газа в воздухе является опасным для жизни.

При некоторых патологических состояниях, например, при отравлении сильными окислителями (бертолетовой солью, перманганатом калия и др.) образуется прочное соединение гемоглобина с кислородом – метгемоглобин, в котором происходит окисление железа, и оно становится трехвалентным. В результате этого гемоглобин теряет способность отдавать кислород тканям, что может привести к гибели человека.

В скелетных и сердечной мышцах находится мышечный гемоглобин, называемый миоглобином. Он играет важную роль в снабжении кислородом работающих мышц.

Имеется несколько форм гемоглобина, отличающихся строением белковой части – глобина. У плода содержится гемоглобин F. В эритроцитах взрослого человека преобладает гемоглобин А (90%). Различия в строении белковой части определяют сродство гемоглобина к кислороду. У фетального гемоглобина оно намного больше, чем у гемоглобина А. Это помогает плоду не испытывать гипоксии при относительно низком парциальном напряжении кислорода в его крови.

Ряд заболеваний связан с появлением в крови патологических форм гемоглобина. Наиболее известной наследственной патологией гемоглобина является серповидноклеточная анемия, Форма эритроцитов напоминает серп. Отсутствие или замена нескольких аминокислот в молекуле глобина при этом заболевании приводит к существенному нарушению функции гемоглобина.

В клинических условиях принято вычислять степень насыщения эритроцитов гемоглобином. Это так называемый цветовой показатель. В норме он равен 1. Такие эритроциты называются нормохромными. При цветовом показателе более 1,1 эритроциты гиперхромные, менее 0,85 – гипохромные. Цветовой показатель важен для диагностики анемий различной этиологии.

Гемолиз

Процесс разрушения оболочки эритроцитов и выход гемоглобина в плазму крови называется гемолизом. При этом плазма окрашивается в красный цвет и становится прозрачной – “лаковая кровь”. Различают несколько видов гемолиза.

Осмотический гемолиз может возникнуть в гипотонической среде. Концентрация раствора NаСl, при которой начинается гемолиз, носит название осмотической резистентности эритроцитов, Для здоровых людей границы минимальной и максимальной стойкости эритроцитов находятся в пределах от 0,4 до 0,34%.

Химический гемолиз может быть вызван хлороформом, эфиром, разрушающими белково-липидную оболочку эритроцитов.

Биологический гемолиз встречается при действии ядов змей, насекомых, микроорганизмов, при переливании несовместимой крови под влиянием иммунных гемолизинов.

Температурный гемолиз возникает при замораживании и размораживании крови в результате разрушения оболочки эритроцитов кристалликами льда.

Механический гемолиз происходит при сильных механических воздействиях на кровь, например встряхивании ампулы с кровью.

Рис 3. Электронная микрофотография гемолиза эритроцитов и образование их “теней”

1 – дискоцит, 2 – эхиноцит, 3 – “тени” (оболочки) эритроцитов.

Скорость оседания эритроцитов (СОЭ)

Скорость оседания эритроцитов у здоровых мужчин составляет 2 – 10 мм в час, у женщин – 2 – 15 мм в час. СОЭ зависит от многих факторов: количества, объема, формы и величины заряда эритроцитов, их способности к агрегации, белкового состава плазмы. В большей степени СОЭ зависит от свойств плазмы, чем эритроцитов. СОЭ увеличивается при беременности, стрессе, воспалительных, инфекционных и онкологических заболеваниях, при уменьшении числа эритроцитов, при увеличении содержания фибриногена. СОЭ снижается при увеличении количества альбуминов. Многие стероидные гормоны (эстрогены, глюкокортикоиды), а также лекарственные вещества (салицилаты) вызывают повышение СОЭ.

Эритропоэз

Образование эритроцитов, или эритропоэз, происходит в красном костном мозге. Эритроциты вместе с кроветворной тканью носят название “красного ростка крови”, или эритрона.

Для образования эритроцитов требуются железо и ряд витаминов.

Железо организм получает из гемоглобина разрушающихся эритроцитов и с пищей. Трехвалентное железо пищи с помощью вещества, находящегося в слизистой кишечника, превращается в двухвалентное железо. С помощью белка трансферрина железо, всосавшись, транспортируется плазмой в костный мозг, где оно включается в молекулу гемоглобина. Избыток железа депонируется в печени в виде соединения с белком – ферритина или с белком и липоидом – гемосидерина. При недостатке железа развивается железодефицитная анемия.

Для образования эритроцитов требуются витамин В12 (цианокобаламин) и фолиевая кислота. Витамин В12 поступает в организм с пищей и называется внешним фактором кроветворения. Для его всасывания необходимо вещество (гастромукопротеид), которое вырабатывается железами слизистой оболочки пилорического отдела желудка и носит название внутреннего фактора кроветворения Касла. При недостатке витамина В12 развивается В12-дефицитная анемия, Это может быть или при недостаточном его поступлении с пищей (печень, мясо, яйца, дрожжи, отруби), или при отсутствии внутреннего фактора (резекция нижней трети желудка). Считается, что витамин В12 способствует синтезу глобина, Витамин В12 и фолиевая кислота участвуют в синтезе ДНК в ядерных формах эритроцитов. Витамин В2 (рибофлавин) необходим для образования липидной стромы эритроцитов. Витамин В6 (пиридоксин) участвует в образовании гема. Витамин С стимулирует всасывание железа из кишечника, усиливает действие фолиевой кислоты. Витамин Е (a -токоферол) и витамин РР (пантотеновая кислота) укрепляют липидную оболочку эритроцитов, защищая их от гемолиза.

Для нормального эритропоэза необходимы микроэлементы. Медь помогает всасыванию железа в кишечнике и способствует включению железа в структуру гема. Никель и кобальт участвуют в синтезе гемоглобина и гемсодержащих молекул, утилизирующих железо. В организме 75% цинка находится в эритроцитах в составе фермента карбоангидразы. Недостаток цинка вызывает лейкопению. Селен, взаимодействуя с витамином Е, защищает мембрану эритроцита от повреждения свободными радикалами.

Физиологическими регуляторами эритропоэза являются эритропоэтины, образующиеся главным образом в почках, а также в печени, селезенке и в небольших количествах постоянно присутствующие в плазме крови здоровых людей. Эритропоэтины усиливают пролиферацию клеток-предшественников эритроидного ряда – КОЕ-Э (колониеобразующая единица эритроцитарная) и ускоряют синтез гемоглобина. Они стимулируют синтез информационной РНК, необходимой для образования энзимов, которые участвуют в формировании гема и глобина. Эритропоэтины увеличивают также кровоток в сосудах кроветворной ткани и увеличивают выход в кровь ретикулоцитов. Продукция эритропоэтинов стимулируется при гипоксии различного происхождения: пребывание человека в горах, кровопотеря, анемия, заболевания сердца и легких. Эритропоэз активируется мужскими половыми гормонами, что обусловливает большее содержание эритроцитов в крови у мужчин, чем у женщин. Стимуляторами эритропоэза являются соматотропный гормон, тироксин, катехоламины, интерлейкины. Торможение эритропоэза вызывают особые вещества – ингибиторы эритропоэза, образующиеся при увеличении массы циркулирующих эритроцитов, например у спустившихся с гор людей. Тормозят эритропоэз женские половые гормоны (эстрогены), кейлоны. Симпатическая нервная система активирует эритропоэз, парасимпатическая – тормозит. Нервные и эндокринные влияния на эритропоэз осуществляются, по-видимому, через эритропоэтины.

Об интенсивности эритропоэза судят по числу ретикулоцитов – предшественников эритроцитов. В норме их количество составляет 1 – 2%. Созревшие эритроциты циркулируют в крови в течение 100 – 120 дней.

Разрушение эритроцитов происходит в печени, селезенке, в костном мозге посредством клеток мононуклеарной фагоцитарной системы. Продукты распада эритроцитов также являются стимуляторами кроветворения.

Лейкоциты

Лейкоциты, или белые кровяные тельца, представляют собой бесцветные клетки, содержащие ядро и протоплазму, размером от 8 до 20 мкм.

Количество лейкоцитов в периферической крови взрослого человека колеблется в пределах 4,0 – 9,0х10' /л, или 4000 – 9000 в 1 мкл. Увеличение количества лейкоцитов в крови называется лейкоцитозом, уменьшение – лейкопенией. Лейкоцитозы могут быть физиологическими и патологическими (реактивными). Среди физиологических лейкоцитозов различают пищевой, миогенный, эмоциональный, а также лейкоцитоз, возникающий при беременности. Физиологические лейкоцитозы носят перераспределительный характер и, как правило, не достигают высоких показателей. При патологических лейкоцитозах происходит выброс клеток из органов кроветворения с преобладанием молодых форм. В наиболее тяжелой форме лейкоцитоз наблюдается при лейкозах. Лейкоциты, образующиеся при этом заболевании в избыточном количестве, как правило, малодифференцированы и не способны выполнять свои физиологические функции, в частности, защищать организм от патогенных бактерий. Лейкопения наблюдается при повышении радиоактивного фона, при применении некоторых фармакологических препаратов. Особенно выраженной она бывает в результате поражения костного мозга при лучевой болезни. Лейкопения встречается также при некоторых тяжелых инфекционных заболеваниях (сепсис, милиарный туберкулез). При лейкопениях происходит резкое угнетение защитных сил организма в борьбе с бактериальной инфекцией.

Лейкоциты в зависимости от того, однородна ли их протоплазма или содержит зернистость, делят на 2 группы: зернистые, или гранулоциты, и незернистые, или агранулоциты. Гранулоциты в зависимости от гистологических красок, какими они окрашиваются, бывают трех видов: базофилы (окрашиваются основными красками), эозинофилы (кислыми красками) и нейтрофилы (и основными, и кислыми красками). Нейтрофилы по степени зрелости делятся на метамиелоциты (юные), палочкоядерные и сегментоядерные. Агранулоциты бывают двух видов: лимфоциты и моноциты.

В клинике имеет значение не только общее количество лейкоцитов, но и процентное соотношение всех видов лейкоцитов, получившее название лейкоцитарной формулы, или лейкограммы.

Лейкоцитарная формула здорового человека (в %)
Гранулоциты Агранулоциты
Нейтрофилы Базофилы Эозинофилы Лимфоциты Моноциты
юные Палочко-ядерные Сегменто-ядерные
0 – 1 1 – 5 45 – 65 0 – 1 1 – 5 25 – 40 2 - 8

При ряде заболеваний характер лейкоцитарной формулы меняется. Увеличение количества юных и палочкоядерных нейтрофилов называется сдвигом лейкоцитарной формулы влево. Он свидетельствует об обновлении крови и наблюдается при острых инфекционных и воспалительных заболеваниях, а также при лейкозах.

Все виды лейкоцитов выполняют в организме защитную функцию. Однако осуществление ее различными видами лейкоцитов происходит по-разному.

Нейтрофилы являются самой многочисленной группой. Основная их функция – фагоцитоз бактерий и продуктов распада тканей с последующим перевариванием их при помощи лизосомных ферментов (протеазы, пептидазы, оксидазы, дезоксирибонуклеазы). Нейтрофилы первыми приходят в очаг повреждения. Так как они являются сравнительно небольшими клетками, то их называют микрофагами. Нейтрофилы оказывают цитотоксическое действие, а также продуцируют интерферон, обладающий противовирусным действием. Активированные нейтрофилы выделяют арахидоновую кислоту, которая является предшественником лейкотриенов, тромбоксанов и простагландинов. Эти вещества играют важную роль в регуляции просвета и проницаемости кровеносных сосудов и в запуске таких процессов, как воспаление, боль и свертывание крови.

По нейтрофилам можно определить пол человека, так как у женского генотипа имеются круглые выросты – “барабанные палочки”.

Рис 4. Половой хроматин (“барабанные палочки”) в гранулоците женщины

Эозинофилы также обладают способностью к фагоцитозу, но это не имеет серьезного значения из-за их небольшого количества в крови. Основной функцией эозинофилов является обезвреживание и разрушение токсинов белкового происхождения, чужеродных белков, а также комплекса антиген-антитело. Эозинофилы продуцируют фермент гистаминазу, который разрушает гистамин, освобождающийся из поврежденных базофилов и тучных клеток при различных аллергических состояниях, глистных инвазиях, аутоиммунных заболеваниях. Эозинофилы осуществляют противоглистный иммунитет, оказывая на личинку цитотоксическое действие. Поэтому при этих заболеваниях увеличивается количество эозинофилов в крови (эозинофилия). Эозинофилы продуцируют плазминоген, который является предшественником плазмина – главного фактора фибринолитической системы крови. Содержание эозинофилов в периферической крови подвержено суточным колебаниям, что связано с уровнем глюкокортикоидов. В конце второй половины дня и рано утром их на 20~ меньше среднесуточного уровня, а в полночь – на 30% больше.

Базофилы продуцируют и содержат биологически активные вещества (гепарин, гистамин и др.), чем и обусловлена их функция в организме. Гепарин препятствует свертыванию крови в очаге воспаления. Гистамин расширяет капилляры, что способствует рассасыванию и заживлению. В базофилах содержатся также гиалуроновая кислота, влияющая на проницаемость сосудистой стенки; фактор активации тромбоцитов (ФАТ); тромбоксаны, способствующие агрегации тромбоцитов; лейкотриены и простагландины. При аллергических реакциях (крапивница, бронхиальная астма, лекарственная болезнь) под влиянием комплекса антиген-антитело происходит дегрануляция базофилов и выход в кровь биологически активных веществ, в том числе гистамина, что определяет клиническую картину заболеваний.

Моноциты обладают выраженной фагоцитарной функцией. Это самые крупные клетки периферической крови и их называют макрофагами. Моноциты находятся в крови 2-3 дня, затем они выходят в окружающие ткани, где, достигнув зрелости, превращаются в тканевые макрофаги (гистиоциты). Моноциты способны фагоцитировать микробы в кислой среде, когда нейтрофилы не активны. Фагоцитируя микробы, погибшие лейкоциты, поврежденные клетки тканей, моноциты очищают место воспаления и подготавливают его для регенерации. Моноциты синтезируют отдельные компоненты системы комплемента. Активированные моноциты и тканевые макрофаги продуцируют цитотоксины, интерлейкин (ИЛ-1), фактор некроза опухолей (ФНО), интерферон, тем самым осуществляя противоопухолевый, противовирусный, противомикробный и противопаразитарный иммунитет; участвуют в регуляции гемопоэза. Макрофаги принимают участие в формировании специфического иммунного ответа организма. Они распознают антиген и переводят его в так называемую иммуногенную форму (презентация антигена). Моноциты продуцируют как факторы, усиливающие свертывание крови (тромбоксаны, тромбопластины), так и факторы, стимулирующие фибринолиз (активаторы плазминогена).

Лимфоциты являются центральным звеном иммунной системы организма. Они осуществляют формирование специфического иммунитета, синтез защитных антител, лизис чужеродных клеток, реакцию отторжения трансплантата, обеспечивают иммунную память. Лимфоциты образуются в костном мозге, а дифференцировку проходят в тканях. Лимфоциты, созревание которых происходит в вилочковой железе, называются Т-лимфоцитами (тимусзависимые). Различают несколько форм Т-лимфоцитов. Т–киллеры (убийцы) осуществляют реакции клеточного иммунитета, лизируя чужеродные клетки, возбудителей инфекционных заболеваний, опухолевые клетки, клетки-мутанты. Т-хелперы (помощники), взаимодействуя с В-лимфоцитами, превращают их в плазматические клетки, т.е. помогают течению гуморального иммунитета. Т-супрессоры (угнетатели) блокируют чрезмерные реакции В-лимфоцитов. Имеются также Т-хелперы и Т-супрессоры, регулирующие клеточный иммунитет. Т-клетки памяти хранят информацию о ранее действующих антигенах.

В-лимфоциты (бурсозависимые) проходят дифференцировку у человека в лимфоидной ткани кишечника, небных и глоточных миндалин. В-лимфоциты осуществляют реакции гуморального иммунитета. Большинство В-лимфоцитов являются антителопродуцентами. В-лимфоциты в ответ на действие антигенов в результате сложных взаимодействий с Т-лимфоцитами и моноцитами превращаются в плазматические клетки. Плазматические клетки вырабатывают антитела, которые распознают и специфически связывают соответствующие антигены. Различают 5 основных классов антител, или иммуноглобулинов: JgA, JgG, JgМ, JgD, JgЕ. Среди В-лимфоцитов также выделяют клетки-киллеры, хелперы, супрессоры и клетки иммунологической памяти.

О-лимфоциты (нулевые) не проходят дифференцировку и являются как бы резервом Т- и В-лимфоцитов.

Лейкопоэз

Все лейкоциты образуются в красном костном мозге из единой стволовой клетки. Предшественники лимфоцитов первыми ответвляются от общего древа стволовых клеток; формирование лимфоцитов происходит во вторичных лимфатических органах.

Лейкопоэз стимулируется специфическими ростовыми факторами, которые воздействуют на определенные предшественники гранулоцитарного и моноцитарного рядов. Продукция гранулоцитов стимулируется гранулоцитарным колониестимулирующим фактором (КСФ-Г), образующимся в моноцитах, макрофагах, Т-лимфоцитах, а угнетается – кейлонами и лактоферрином, секретируемыми зрелыми нейтрофилами; простагландинами Е. Моноцитопоэз стимулируется моноцитарным колониестимулирующим фактором (КСФ-М), катехоламинами. Простагландины Е, a - и b -интерфероны, лактоферрин тормозят продукцию моноцитов. Большие дозы гидрокортизона препятствуют выходу моноцитов из костного мозга. Важная роль в регуляции лейкопоэза принадлежит интерлейкинам. Одни из них усиливают рост и развитие базофилов (ИЛ-3) и эозинофилов (ИЛ-5), другие стимулируют рост и дифференцировку Т- и В-лимфоцитов (ИЛ-2,4,6,7). Лейкопоэз стимулируют продукты распада самих лейкоцитов и тканей, микроорганизмы и их токсины, некоторые гормоны гипофиза, нуклеиновые кислоты,

Жизненный цикл разных видов лейкоцитов различен, Одни живут часы, дни, недели, другие на протяжении всей жизни человека.

Лейкоциты разрушаются в слизистой оболочке пищеварительного тракта, а также в ретикулярной ткани.

Тромбоциты

Тромбоциты, или кровяные пластинки – плоские клетки неправильной округлой формы диаметром 2 – 5 мкм. Тромбоциты человека не имеют ядер. Количество тромбоцитов в крови человека составляет 180 – 320х10'/л, или 180 000 – 320 000 в 1 мкл. Имеют место суточные колебания: днем тромбоцитов больше, чем ночью. Увеличение содержания тромбоцитов в периферической крови называется тромбоцитозом, уменьшение – тромбоцитопенией.

Рис 5. Тромбоциты, прилипшие к стенке аорты в зоне повреждения эндотелиального слоя.

Главной функцией тромбоцитов является участие в гемостазе. Тромбоциты способны прилипать к чужеродной поверхности (адгезия), а также склеиваться между собой ~агрегация) под влиянием разнообразных причин. Тромбоциты продуцируют и выделяют ряд биологически активных веществ: серотонин, адреналин, норадреналин, а также вещества, получившие название пластинчатых факторов свертывания крови. Тромбоциты способны выделять из клеточных мембран арахидоновую кислоту и превращать ее в тромбоксаны, которые, в свою очередь, повышают агрегационную активность тромбоцитов. Эти реакции происходят под действием фермента циклооксигеназы. Тромбоциты способны к передвижению за счет образования псевдоподий и фагоцитозу инородных тел, вирусов, иммунных комплексов, тем самым, выполняя защитную функцию. Тромбоциты содержат большое количество серотонина и гистамина, которые влияют на величину просвета и проницаемость капилляров, определяя тем самым состояние гистогематических барьеров.

Тромбоциты образуются в красном костном мозге из гигантских клеток мегакариоцитов. Продукция тромбоцитов регулируется тромбоцитопоэтинами. Тромбоцитопоэтины образуются в костном мозге, селезенке, печени. Различают тромбоцитопоэтины кратковременного и длительного действия. Первые усиливают отщепление тромбоцитов от мегакариоцитов и ускоряют их поступление в кровь. Вторые способствуют дифференцировке и созреванию мегакариоцитов.

Активность тромбоцитопоэтинов регулируется интерлейкинами (ИЛ-6 и ИЛ-11). Количество тромбоцитопоэтинов повышается при воспалении, необратимой агрегации тромбоцитов, Продолжительность жизни тромбоцитов составляет от 5 до 11 дней. Разрушаются кровяные пластинки в клетках системы макрофагов.

Методические рекомендации к определению и выведению гемограммы у ...
Министерство сельского хозяйства Российской Федерации Ульяновская государственная сельскохозяйственная академия Кафедра физиологии ...
Циркулирующая в сосудистой системе кровь представляет более или менее равномерную взвесь в плазме форменных элементов: эритроцитов, лейкоцитов и кровяных пластинок (у птиц ...
В крови птиц и всех низших позвоночных, наряду с эритроцитами и лейкоцитами, встречается третий тип клеток - тромбоциты.
Раздел: Рефераты по ботанике и сельскому хозяйству
Тип: учебное пособие
Механизмы реализации путей гибели клетки
Омский государственный педагогический университет Кафедра ботаники, цитологии и генетики дисциплина "Биология клетки" Контрольная работа На тему По ...
2. Вязкость крови - обусловлена наличием в крови эритроцитов и в меньшей степени белков плазмы.
7. Кровь состоит из жидкой части плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов.
Раздел: Рефераты по биологии
Тип: контрольная работа
Неотложная помощь в невропатологии
Неотложная помощь в невропатологии Часть первая НЕВРОЛОГИЧЕСКИЕ СИНДРОМЫ ГОЛОВНАЯ БОЛЬ Механизмы возникновения. Многие внутричерепные образования ...
В крови увеличивается количество эритроцитов и гемоглобина, в моче определяются белок и гиалиновые цилиндры.
... течение 4-6 ч), по нарастанию общей слабости, повышению температуры тела, продолжительности скрытого периода, количеству лимфоцитов через 2-3 дня после облучения (1000-100 в 1 мм3 ...
Раздел: Рефераты по медицине
Тип: книга
Кровь
... и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов. Кровь состоит из ...
Имеется три основных типа клеточных элементов крови: красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты).
Болезни крови проще всего разделить на четыре категории - в зависимости от того, какие из основных компонентов крови при этом затрагиваются: эритроциты, тромбоциты, лейкоциты или ...
У многих из них, в частности у большинства беспозвоночных, в крови нет клеток, подобных эритроцитам, а дыхательный пигмент (гемоглобин или гемоцианин) находится в плазме (гемолимфе ...
Раздел: Рефераты по медицине
Тип: реферат
ЦНС
Этот файл взят из коллекции Medinfo http://www.doktor.ru/medinfo http://medinfo.home.ml.org E-mail: medinfo@mail.admiral.ru or medreferats@usa.net or ...
При лабораторном исследовании обнаруживаются эритроциты, в норме отсутствующие, в различном количестве - от 5-10 до сотен тысяч в 1 мм 53 0. Увеличивается соответственно количество ...
Олновременно при необходимости переливают эритроцитарную массу. плазму, белки плазмы крови.
Раздел: Рефераты по медицине
Тип: реферат