Курсовая работа: Проектирование систем электроснабжения предприятий железнодорожного транспорта

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ РФ

Иркутский Государственный Университет

Путей Сообщения

 

Кафедра: ЭЖТ

Курсовой проект

ТЕМА: «Проектирование систем электроснабжения предприятий железнодорожного транспорта»

Выполнил:

студент группы ЭНС-07-3

Студентов А.С.

Проверил:

доктор техн. наук, профессор

Крюков А.В.

Иркутск, 2009г.


Содержание

 

Введение

Реферат

Исходные данные

1. Ведомость электрических нагрузок

2. Расчет электрических нагрузок

2.1. Силовые электрические нагрузки

2.2. Электрические нагрузки освещения

2.3. Суммарные электрические нагрузки цехов

2.4. Картограмма нагрузок

2.5. Выбор компенсирующих устройств

2.6. Определение координат центра электрических нагрузок

3. Выбор числа и мощности цеховых трансформаторных подстанций

3.1. Выбор числа и мощности цеховых трансформаторных подстанций

4. Разработка системы внутризаводского электроснабжения

4.1. Расчет потерь в трансформаторах

4.2. Потери в трансформаторах

4.3. Нагрузки на стороне высокого напряжения трансформаторных подстанций

4.4. Выбор места положения ГПП или ГРП

4.5. Длины кабельных линий

4.6. Количество ячеек отходящих линий ГРП

4.7. Расчет электрических нагрузок на головных участках магистралей

4.8. Выбор сечений кабелей по нагреву

4.9. Выбор сечений по экономической плотности тока

5. Технико-экономическое сравнение вариантов

5.1. Определение капитальных затрат

5.2. Определение издержек на эксплуатацию

6. Уточненный расчет выбранного варианта

6.1. Проверка выбранных сечений по потере напряжений

6.1.1. Сопротивления кабельных линий

6.1.2. Определение потери напряжения

6.2. Разработка системы внешнего электроснабжения

6.2.1. Определение расчетных электрических нагрузок предприятия

6.2.2. Проверка по потере напряжения

6.3. Расчет токов короткого замыкания

6.4. Составление схемы замещения

6.5. Результаты расчета токов кз

7. Выбор оборудования

7.1. Выключатели

7.2. Предохранители

7.3. Разъединитель

7.4. Выключатели нагрузки

7.5. Выбор измерительных трансформаторов

7.3.1. Трансформаторы тока

7.3.2. Трансформаторы напряжения

8. Расчет внутренней сети

9. Расчет заземляющего устройства

Вывод


Введение

В настоящее время, в эпоху электрификации, когда электрооборудование применяется повсеместно, одной из главных задач при строительстве любого объекта, является правильное проектирование системы электроснабжения.

Одной из самых электропотребляемых производств, является железнодорожный транспорт. Данную отрасль, можно разделить на две группы, по признаку электропотребителя. Первая группа – контактная сеть. Вторая группа – предприятия железнодорожного транспорта.

Предприятия ж.д. транспорта включаю в себя как объекты обслуживающие ж.д. (вокзалы, депо, станции и т.д.) так и отдельный большие предприятия производящие продукцию для нужд ж.д. транспорта. Предприятия ж.д. используют обширный перечень производственных механизмов на электропитании. Вот наиболее часто используемые агрегаты:

·  Электродвигатели производственных механизмов встречаются в предприятиях всех служб. Наибольшие установленные мощности электропривода станков и других механизмов относятся к локомотивному и вагонному хозяйствам.

·  В цехах локомотивных и вагонных депо установлены токарные, сверлильные, фрезерные, строгальные, шлифовальные, токарно-карусельные, винторезные и другие станки. Кроме станков, к потребителям этой группы могут быть отнесены молоты, установленные в кузнечных цехах локомотивных и вагонных депо.

·  Станочное оборудование с электроприводом, как правило, небольшой мощности установлено в механических мастерских предприятий служб пути, грузового хозяйства, сигнализации и связи, электрификации и энергетического хозяйства, гражданских сооружений, отдела водоснабжения и др.

·  К силовым общепромышленным установкам относятся компрессоры, насосы, вентиляторы и подьемно-транспортные устройства.

·  Компрессорные установки широко применяются н железнодорожном транспорте - в локомотивных и вагонных депо для снабжения сжатым воздухом пневматического инструмента, проверки тормозной системы подвижного состава и других нужд.

·  Вентиляторы устанавливаются в производственных и служебно-бытовых зданиях для систем приточно-вытяжной вентиляции, калориферного отопления, в установках для сушки тяговых двигателей в локомотивных депо, местного отсоса в цехах и т.д.

·  Потребители рассматриваемой группы работают как правило в продолжительном режиме.

·  Подъемно-транспортные механизмы (мостовые краны, тали, кран-балки, электродомкраты и др.)применяются в локомотивных депо и других хозяйствах. Потребители этой группы работают в повторно-кратковременном режиме с частыми толчками нагрузки.

Электроосветительные нагрузки применяются на всех железнодорожных станциях, в хозяйствах всех служб. Наряду с нагрузками внутреннего освещения производственных, служебно-бытовых, административных, жилых и других зданий значительную долю нагрузок составляет наружное освещение станций, территорий предприятий и поселков.

В отношении обеспечения надежности электроснабжения потребители делятся на три категории.

·  К первой категории относятся электроприемники, перерыв в электроснабжении которых может повлечь за собой опасность для жизни людей, срыв графика поездов, принести значительный ущерб железнодорожному транспорту и народному хозяйству в целом. Электроснабжение должно обеспечиваться от двух независимых источников питания, и перерыв электроснабжения допускается на время автоматического восстановления питания.

·  Ко второй категории относятся электроприемники, перерыв в электроснабжении которых приводит к нарушению производственного цикла и массовым простоям рабочих энергоемких предприятий. Рекомендуется обеспечивать питание от двух независимых источников питания. Перерыв в электроснабжении допустим лишь на время включения второго источника питания дежурным персоналом или выездной бригадой.

·  К третьей категории относятся все остальные электроприемники, не относящиеся к первой и второй категориям. Электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для восстановления электроснабжения, не превышают одних суток.


Реферат

В курсовом проекте рассчитаны электрические нагрузки цехов, определен центр электрических нагрузок. Выбрано место положения главной распределительной подстанции. Рассчитаны мощности цехов с учетом потерь в трансформаторах и с учетом компенсации реактивной мощности на низкой стороне. Для сети 10кВ выбраны кабельные линии. Рассмотрены два варианта схем электроснабжения – магистральная и радиальная схемы. Рассчитаны ток короткого замыкания для РУ-10 кВ, выбрано и проверено оборудование для схемы электроснабжения. Нарисована однолинейная схема электроснабжения.


Исходные данные

 

Таблица 1

Удельная плотность нагрузки

Потребитель электроэнергии

,

1 Административные здания 30…50
2 Ремонтные мастерские 50…80
3 Деревообрабатывающие цеха 75…140
4 Лаборатории промышленных предприятий 130…290
5 Литейные цехи 230…270
6 Механические, сборочные, термические и инструментальные цехи 200…600
7 Освещение цехов 5…20

Таблица 2

Характеристики цехов предприятия

Наименование цеха

, кВт

Размеры цеха

F, м2

,

А, м В, м
1 Инструментальный 1129 40 90 3600 313,61
2 Литейный 1025 55 80 4400 232,95
3 Сборочный 1048 90 46 4140 253,14
4 Механический 980 40 60 2400 408,33
5 Термический 661 40 60 2400 275,42
ИТОГО 4843

Рис.1. Структура установленной мощности предприятия


1. Ведомость нагрузок

 

Таблица 3

N Наименование электроприемника Рн,кВт кол-во шт РнΣ

Ки

cos(φ)
Цех1 Литейный
1 Сушильные шкафы 15 15 225 0,5 0,85
2 Вентиляторы 12 8 96 0,65 0,8
3 Многоподшип, автоматы 30 10 300 0,25 0,65
4 Компрессоры 5 6 30 0,65 0,8
5 Однопост,дв-ли генератора 34 7 238 0,6 0,7
6 Эл.печи д/ фас. литья 40 6 240 0,75 0,87
Сумма 52 1129
N Наименование электроприемника Рн,кВт. кол-во шт РнΣ

Ки

cos(φ)
Цех2 Инструментальный
1 Тр-ры для ручной сварки 15 7 105 0,3 0,35
2 Дуговые сталепл. печи 18 15 270 0,75 0,9
3 Вентиляторы 10 12 120 0,65 0,8
4 Печи дуговые сталепл. 30 5 150 0,75 0,9
5 Переносной эл. инструмент 14 8 112 0,06 0,45
6 Кран-балка, 2т 5 2 10 0,06 0,45
7 Выпрямитель сварочный 18 3 54 0,25 0,65
8 Шлифовальные станки 17 12 204 0,7 0,8
Сумма 64 1025
N Наименование электроприемника Рн,кВт кол-во шт РнΣ

Ки

cos(φ)
Цех3 Сборочный
1 Транспортеры (винтовые) 27 2 54 0,65 0,75
2 Транспортеры(подъемные) 25 3 75 0,4 0,75
3 Дробилки крупного дробления 32 6 194 0,4 0,75
4 Фрезерные станки 20 6 120 0,12 0,4
5 Электротележки 18 4 72 0,1 0,4
6 Вентилятор 4 7 28 0,65 0,8
7 Шлифовальные станки 15 15 225 0,7 0,8
8 Тр-ры для ручной сварки 20 5 100 0,3 0,35
9 Печи дуговые сталепл. 30 6 180 0,75 0,9
Сумма 54 1048
N Наименование электроприемника Рн,кВт кол-во шт РнΣ

Ки

cos(φ)
Цех4 Механический
1 Молот 150 кг 22,5 3 67,5 0,06 0,45
2 Вентилятор 4 7 28 0,65 0,8
3 Многоподшипниковые авт-ты 25 8 200 0,2 0,5
4 Токарно-винторезный ст-к 14,2 6 85,2 0,25 0,65
5 Шлифовальные ст-ки 15 15 225 0,7 0,8
6 Тр-ры для ручной сварки 20 5 100 0,3 0,35
7 Кран-балка , 3. 2 т 5,0 1 5 0,06 0,45
8 Домкраты 22,5 12 270 0,06 0,45
Сумма 57 980,7
N Наименование электроприемника Рн,кВт кол-во шт РнΣ

Ки

cos(φ)
Цех5 Литейный
1 Долбёжный станок 6 4 24 0,14 0,6
2 Станок автомат 7 2 14 0,23 0,65
3 Транспортёр 12 3 36 0,6 0,7
4 Печь сопротивления 15 4 60 0,55 0,95
5 Сушильная камера 50 2 100 0,55 0,95
6 Сварочный 20 2 40 0,3 0,35
7 Пресс 9 8 72 0,25 0,65
8 Нагреватели 10 4 40 0,35 0,55
9 Мостовой кран 15 3 45 0,06 0,45
10 Наждачный станок 4 5 20 0,14 0,6
11 Толкатель 15 2 30 0,06 0,45
12 Плавильная печь 40 2 80 0,75 0,87
13 Моечная машина 50 2 100 0,06 0,45
Сумма 43 661

Рис.2


2. Расчет электрических нагрузок

 

2.1.Силовые электрические нагрузки

Расчет электрических нагрузок по цехам выполняется по методу упорядоченных диаграмм. Главным расчетным параметром этого метода является коэффициент расчетной мощности , определяемый в зависимости от эффективного числа приемников , и группового коэффициента использования  для данного узла:

                  (1)

                             (2)

где n - число электроприемников в группе.

Расчетная активная нагрузка любой линии на 2УР находится по формуле

                (3)

Расчетная реактивная мощность для электроприемников с индуктивным характером нагрузки определяется как

,     (4)

где принимается в зависимости от :

                 (5)

Значения  находятся по табл.


Таблица №4

Расчет электрических нагрузок по цехам

Наим. эл-ка n шт. Рн,кВт n*Рн

n*P2н

Ки

cos(φ) tg(φ) Pc Qc Кра Крр Рр Qp Sp

Цех1

Сушильные шкафы 15 15 225 3375 0,5 0,85 0,62 112,5 69,72
Вентиляторы 8 12 96 1152 0,65 0,8 0,75 62,4 46,80
Многоподшип, автоматы 10 30 300 9000 0,25 0,65 1,17 75 87,68
Компрессоры 6 5 30 150 0,65 0,8 0,75 19,5 14,63
Однопост,дв-ли генератора 7 34 238 8092 0,6 0,7 1,02 142,8 145,69
Эл.печи д/ фас. литья 6 40 240 9600 0,75 0,87 0,57 180 102,01

итого

1129,00 31369,00 0,52 592,20 466,53 40,63 0,80 1,00 473,76 466,53 664,90

Цех2

Тр-ры для ручной сварки 7 15 105 1575 0,3 0,35 2,68 31,5 84,31
Дуговые сталепл. печи 15 18 270 4860 0,75 0,9 0,48 202,5 98,08
Вентиляторы 12 10 120 1200 0,65 0,8 0,75 78 58,50
Печи дуговые сталепл. 5 30 150 4500 0,75 0,9 0,48 112,5 54,49
Переносной эл. инструмент 8 14 112 1568 0,06 0,45 1,98 6,72 13,34
Кран-балка, 2т 2 5 10 50 0,06 0,45 1,98 0,6 1,19
Выпрямитель сварочный 3 18 54 972 0,25 0,65 1,17 13,5 15,78
Шлифовальные станки 12 17 204 3468 0,7 0,8 0,75 142,8 107,10

итого

1025,00 18193,00 0,57 588,12 432,78 57,75 0,75 1,00 441,09 432,78 617,95

Цех3

Транспортеры (винтовые) 2 27 54 1458 0,65 0,75 0,88 35,1 30,96
Транспортеры(подъемные) 3 25 75 1875 0,4 0,75 0,88 30 26,46
Дробилки крупного дробления 6 32 192 6144 0,4 0,75 0,88 76,8 67,73
Фрезерные станки 6 20 120 2400 0,12 0,4 2,29 14,4 32,99
Электротележки 4 18 72 1296 0,1 0,4 2,29 7,2 16,50
Вентилятор 7 4 28 112 0,65 0,8 0,75 18,2 13,65
Шлифовальные станки 15 15 225 3375 0,7 0,8 0,75 157,5 118,13
Тр-ры для ручной сварки 5 20 100 2000 0,3 0,35 2,68 30 80,29
Печи дуговые сталепл. 6 30 180 5400 0,75 0,9 0,48 135 65,38

итого

1046,00 24060,00 0,48 504,20 452,09 45,47 0,80 1,00 403,36 452,09 605,87

Цех4

Молот 150 кг 3 22,5 67,5 1518,75 0,06 0,45 1,98 4,05 8,04
Вентилятор 7 4 28 112 0,65 0,8 0,75 18,2 13,65
Многоподшипниковые авт-ты 8 25 200 5000 0,2 0,5 1,73 40 69,28
Токарно-винторезный ст-к 6 14,2 85,2 1209,84 0,25 0,65 1,17 21,3 24,90
Шлифовальные ст-ки 15 15 225 3375 0,7 0,8 0,75 157,5 118,13
Тр-ры для ручной сварки 5 20 100 2000 0,3 0,35 2,68 30 80,29
Кран-балка , 3. 2 т 1 5 5 25 0,06 0,45 1,98 0,3 0,60
Домкраты 12 22,5 270 6075 0,06 0,45 1,98 16,2 32,15

итого

980,70 19315,59 0,29 287,55 347,03 49,79 0,75 1,00 215,66 347,03 408,59

Цех5

Долбёжный станок 4 6 24 144 0,14 0,6 1,33 3,36 4,48
Станок автомат 2 7 14 98 0,23 0,65 1,17 3,22 3,76
Транспортёр 3 12 36 432 0,6 0,7 1,02 21,6 22,04
Печь сопротивления 4 15 60 900 0,55 0,95 0,33 33 10,85
Сушильная камера 2 50 100 5000 0,55 0,95 0,33 55 18,08
Сварочный 2 20 40 800 0,3 0,35 2,68 12 32,12
Пресс 8 9 72 648 0,25 0,65 1,17 18 21,04
Нагреватели 4 10 40 400 0,35 0,55 1,52 14 21,26
Мостовой кран 3 15 45 675 0,06 0,45 1,98 2,7 5,36
Наждачный станок 5 4 20 80 0,14 0,6 1,33 2,8 3,73
Толкатель 2 15 30 450 0,06 0,45 1,98 1,8 3,57
Плавильная печь 2 40 80 3200 0,75 0,87 0,57 60 34,00
Моечная машина 2 50 100 5000 0,06 0,45 1,98 6 11,91

итого

661,00 17827,00 0,35 233,48 192,20 24,51 0,85 1,00 198,46 192,20 276,27

2.2 Электрические нагрузки освещения

Расчет нагрузок производим с помощью коэффициента спроса:

Потребляемая мощность электроосвещением находиться по формуле:

Росв.=Кс*Ру (6)

где,   - Кс – коэффцент спроса,

- Ру – установленная мощность.

Ру = Руд*F (7)

где,   - F – площадь цеха (м2)

- Р уд – определяем из справ. материалов

 

Таблица №5

Наименование цеха

КСО

Р уд,

Вт/м2

F,

м2

Росв.,

кВт

Qосв,

кВАр

1 Инструментальный 0,95 16 3600 54,720 0,5 27,360
2 Литейный 0,95 15 4400 62,700 0,5 31,350
3 Сборочный 0,85 15 4140 52,785 0,5 26,392
4 Механический 0,95 16 2400 36,480 0,5 18,240
5 Термический 0,95 15 2400 34,200 0,5 17,100

 

ИТОГО

 

 

 

240,88

 

120,44

 

2.3 Суммарные электрические нагрузки цехов

 

Таблица №6

Наименование цеха

Рр,

кВт

Qр,

кВАр

Росв,

кВт

Qосв,

кВАр

РрS,

кВт

QрS,

кВАр

1 Инструментальный 473,76 466,53 54,720 27,360 528,48 493,89
2 Литейный 441,09 432,78 62,700 31,350 503,79 464,13
3 Сборочный 403,36 452,09 52,785 26,392 456,145 478,482
4 Механический 215,66 347,03 36,480 18,240 252,14 365,27
5 Термический 198,46 192,20 34,200 17,100 232,66 209,3

Рис.3. Расчетные силовые и осветительные нагрузки

2.4 Картограмма нагрузок

Картограмма электрических нагрузок представляет собой нанесение на генеральный план окружности в выбранном масштабе, соответствующие нагрузкам цехов.

Ррасi=МpRi2 (8)

M =15 – выбранный масштаб;

Ri=Ö Ppасi / pМ (9)

Нагрузка освещения представляется на картограмме в виде сектора, с углом

a=Росв*360 / РрΣ (10)

Ррi=360 Pосв=a


Таблица №7

Наименование цеха

Рр,

кВт

Росв,

кВт

Рр,

кВт

,

град

R,

см

1 Инструментальный 473,76 54,720 528,48 37,2752 3,348835
2 Литейный 441,09 62,700 503,79 44,80438 3,269672
3 Сборочный 403,36 52,785 456,145 41,65912 3,111221
4 Механический 215,66 36,480 252,14 52,08535 2,313131
5 Термический 198,46 34,200 232,66 52,91842 2,221981

рис.4. Картограмма нагрузок

 

2.5 Выбор компенсирующих устройств

Потребная мощность компенсирующих устройств (КУ)

 , (3.23)

где 1,1 – коэффициент запаса;

 - экономическое значение коэффициента реактивной мощности,

=0,33

                         (3.24)

К установке принимается ближайшая по мощности стандартная комплектная конденсаторная установка (ККУ). При этом  не должна превышать, т.е. .

Тогда итоговая реактивная нагрузка на шинах ТП

 

Таблица №8

Наименование цеха

Рр,

кВт

Q,

кВАр

Sp,

кВА

кВАр

кВАр

кВАр

кВАр

1 Инструментальный 528,48 493,89 723,3384 0,934548 351,4408 2*150=300 193,89 562,9249
2 Литейный 503,79 464,13 684,9971 0,921277 327,6672 2*150=300 164,13 529,8519
3 Сборочный 456,145 478,482 661,0698 1,048969 360,7496 2*150=300 178,482 489,8205
4 Механический 252,14 365,27 443,8432 1,448679 310,2702 2*150=300 65,27 260,4511
5 Термический 232,66 209,3 312,9491 0,899596 145,7744 2*75=150 59,3 240,0982

Таблица №9

Параметры комплектных конденсаторных установок (ККУ) 0.4 кВ

Наименование цеха Тип Мощность Количество Суммарная мощность, кВАр
1 Инструментальный УКН-0.38-150У3; 2*150 2 300
2 Литейный УКН-0.38-150У3; 2*150 2 300
3 Сборочный УКН-0.38-150У3; 2*150 2 300
4 Механический УКН-0.38-150У3; 2*150 2 300
5 Термический УКН-0.38-75У3 2*75 2 150

Сводная таблица мощностей

P Q S
Итого 1732,33 1890,63 2564,264
Освещение 240,885 120,442 269,3174

Всего

1973,215

2011,072

2817,444

Мощность КУ - -1350 -

Итого с учётом КУ

1973,215

661,072

2081,008

 

2.6 Определение координат центра электрических нагрузок

 

Для определения центра электрических нагрузок используется механическая аналогия (находим центр тяжести плоской фигуры). На генеральном плане наносим прямоугольную декартовую систему координат, находим координаты цехов.

 

Таблица №10

ЦЕХ

Рр, кВт

X Y

РрX

РрY

X0

Y0

1 Инструментальный 528,48 50 200 26424 105696

83,38654

137,8243

2 Литейный 503,79 127 206,5 63981,33 104032,6
3 Сборочный 456,145 72 99,5 32842,44 45386,43
4 Механический 252,14 47,5 34,5 11976,65 8698,83
5 Термический 232,66 126 35 29315,16 8143,1

 

ИТОГО

1973,215

 

 

164539,6

271957


 

Рис.5


3. Выбор числа и мощности цеховых трансформаторных подстанций

3.1 Выбор числа и мощности цеховых трансформаторных подстанций

 

Таблица №11

Наименование цеха

Рр,

кВт

,

кВАр

,

кВАр

Число и мощность трансформаторовt Суммарная мощность трансформаторов, кВА Коэффициент загрузки

Нормальный

Аварийный

При отключении 30% нагрузки
1 Инструментальный 528,48 193,89 562,9249 2x400 800 0,70 1,41 0,914753
2 Литейный 503,79 164,13 529,8519 2x400 800 0,66 1,32 0,861009
3 Сборочный 456,145 178,482 489,8205 2x400 800 0,61 1,22 0,795958
4 Механический 252,14 65,27 260,4511 2x160 320 0,81 1,63 1,058083
5 Термический 232,66 59,3 240,0982 2x160 320 0,75 1,50 0,975399

Таблица №12

Параметры трансформаторов 10/0.4 кВ

Тип и мощность Потери Напряжение короткого замыкания, % Ток холостого хода, %
Холостого хода Короткого замыкания
1 ТМ-160 0,565 2,65 4,5 2,4
3 ТМ-400 1,05 5,5 4,5 2,1

Рис. 6


4. Разработка системы внутризаводского электроснабжения

 

4.1 Расчет потерь в трансформаторах

Расчетные формулы:

;

4.2 Потери в трансформаторах

 

Таблица №13

Наименование цеха/тип трансформатора

Рр

кВт

кВАр

РРТ

кВт

кВАр

кВА

 кВт

 кВт

%

Iх,

%

,

кВт

,

кВАр

1 Инструментальный 528,48 193,89 264,24 96,945 281,46 1,05 5,50 4,50 2,10 1,73 21,26
2хТМ-400
2 Литейный 503,79 164,13 251,895 82,065 264,92 1,05 5,50 4,50 2,10 1,65 20,75
2хТМ-400
3 Сборочный 456,145 178,482 228,0725 89,241 244,91 1,05 5,50 4,50 2,10 1,56 20,17
2хТМ-400
4 Механический 252,14 65,27 126,07 32,635 130,22 0,565 2,65 4,50 2,40 1,00 10,06
2хТМ-160
5 Термический 232,66 59,3 116,33 29,65 120,05 0,565 2,65 4,50 2,40 0,94 9,71
2хТМ-160

4.3 Нагрузки на стороне высокого напряжения трансформаторных подстанций

Таблица № 14

Наименование цеха/тип трансформатора

Тип

тр-ра

РРТ

кВт

кВАр

,

кВт

,

кВАр

,

кВт

,

кВАр

,

кВА

,

А

1 Инструментальный ТМ-400 264,24 96,945 1,73 21,26 265,97 118,21 291,05 5,04
2 Литейный ТМ-400 251,895 82,065 1,65 20,75 253,55 102,82 273,60 4,73
3 Сборочный ТМ-400 228,0725 89,241 1,56 20,17 229,63 109,41 254,37 4,40
4 Механический ТМ-160 126,07 32,635 1,00 10,06 127,07 42,70 134,05 2,32
5 Термический ТМ-160 116,33 29,65 0,94 9,71 117,27 39,36 123,70 2,14

4.4 Выбор места положения ГПП или ГРП

Для определения места расположения ГПП необходимо располагать генеральным планом железнодорожного узла. На генеральном плане должны быть в масштабе указаны все существующие, реконструируемые и проектируемые предприятия железнодорожного производства, а также прилегающие к железной дороге промышленные и сельскохозяйственные предприятия и т.д.

Исходя из технико-экономических соображений ГПП желательно располагать в центре электрических нагрузок (ЦЭН). Для определения ЦЭН может быть использован приближенный метод определения центра тяжести масс однородных плоских фигур.

Так как ЦЭН находится в близости от железнодорожных путей, а также то обстоятельство, что для размещения ГПП необходимо: достаточно большая площадь, свободная от застройки и подземных коммуникаций, прокладка кратчайших трасс питающих линий, заставляет нас располагать ГПП, несколько отступив от ЦЭН.

Варианты схем внутризаводского электроснабжения


Рис. 7. Кабельные трассы

Рис.8 Кабельные трассы


Рис.9. Вариант 1. Радиальная схема

4.5 Длины кабельных линий

Таблица № 15.

Вариант 1

Наименование линии Количество линий Длина, м Суммарная длина, м
1 ГРП-ТП1 1 84 84
2 ГРП-ТП2 1 152 152
3 ГРП-ТП3 1 22 22
4 ГРП-ТП4 1 77 77
5 ГРП-ТП5 1 223 223
6 ГРП-ТП6 1 191 191
7 ГРП-ТП7 2 225 450
8 ГРП-ТП8 2 190 380
ИТОГО 10 1579

Рис.10. Вариант 2. Магистральная схема

 

Таблица № 16.

 Вариант 2. Длины кабельных линий

Наименование линии Количество линий Длина, м Суммарная длина, м
1 ГРП-ТП1 1 84 84
2 ТП1-ТП2 1 70 70
3 ГРП-ТП3 1 22 22
4 ТП3-ТП4 1 56 56
5 ТП4-ТП8 1 112 112
6 ТП8-ТП6 1 35 35
7 ТП6-ТП5 1 75 75
8 ТП5-ТП7 1 10 10
ИТОГО 8 464

4.6 Количество ячеек отходящих линий ГРП

Вариант 1 ………………….. 10

Вариант 2 ………………….. 4

Значения коэффициентов одновременности  для определения расчетной нагрузки на шинах 6 (10) кВ РП, ГРП, ГПП

 


Таблица № 17

Средневзвешенный коэффициент использования Число присоединений 6 (10) кВ на сборных шинах РП, ГПП.
2 … 4 5 … 8 9 … 25 Более 25

0,90 0,80 0,75 0,70

0,95 0,90 0,85 0,80

1,00 0,95 0,90 0,85

1,00 1,0 0,95 0,90

 

4.7 Расчет электрических нагрузок на головных участках магистралей

 

Таблица № 18

По данным технологов

кВт

кВАр

Ке

____

Kо

Расчетные мощности
Наименование эл/приемника

Кол-во тр-ров,

n

Суммарная ном. мощность, Рн, кВт

,

кВт

,

кВт

Sp,

кВА

IP,

А

магистраль ТП1-ГРП
1 ТП1 1 564,5 265,97 118,21
ИТОГО 1 564,5 265,97 118,21

0.38

0.90

239,373 106,39 261,95 15,12
магистраль ТП3-ГРП
1 ТП3 1 512,5 253,55 102,82
2 ТП5 1 524 229,63 109,41
3 ТП7 1 490 127,07 42,70
4 ТП8 1 330,5 117,27 39,36
ИТОГО 4 1857 727,52 294,29

0.39

0.95

283,733 114,77 306,07 17,671

Примечание:

1.; .

 


4.8 Выбор сечений кабелей по нагреву

Выбор сечения проводов и кабелей по нагреву проводят по расчетному току, который должен быть меньше допустимого тока или равен ему:

Iдоп ³ Ip,

 

Если электроснабжение потребителей производилось по параллельным линиям, то в качестве расчетного принимается ток в одной из параллельных линий в предположении, что вторая линия вышла из строя.

Чтобы определить расчетные токи линий, подходящих к каждому цеху, необходимо учесть потери мощности в трансформаторах и определить полную мощность линии.

Потери мощности в трансформаторе можно определить:

-активные потери:

DРт=DРхх+DРкз*(SpS / Snom)2

-реактивные потери:

DQт=DQхх+DQкз*(SpS / Snom)2

DQкз=Uкз*Snom/100,

Активные потери цеха с учетом потерь в трансформаторе:

P= Pp + DРт

Реактивные потери цеха с учетом потерь в трансформаторе:

 

Q= Qp + QРт

Полная мощность равна:

S=Ö P2+Q2

Расчетный ток:

Iр=S / Ö3 *Unom

Если у нас двух трансформаторная цеховая подстанция, то суммарную полную мощность берем в два раза меньше.

Определение суммарной расчетной нагрузки узла системы эдектроснабжения по значениям n расчетных нагрузок осуществляется суммированием расчетных нагрузок отдельных групп электроприемников, входящих в узле с учетом разновременности (несовпадения) максимумов нагрузок.

S=Kнм*SSpi,

где Кнм - коэффициент несовпадения максимумов нагрузки,

Spi – расчетная нагрузка I-го электроприемника или группы электроприемников.

Кнм - равен отношению максимальной получасовой нагрузки к сумме максимальных получасовых нагрузок отдельных электроприемников или цехов.

Коррозионная способность земли низкая. Выбирается кабель марки ААБ.

 


Таблица № 19.

Радиальная схема

Наименование

линии

Кол-во линий

Длина,

м

, норм. режим, А

, авар. режим, А

Сечение, мм2

, А

1 ГРП-ТП1 1 84 5,04 10,08 16 75
2 ГРП-ТП2 1 151 5,04 10,08 16 75
3 ГРП-ТП3 1 260 4,73 9,46 16 75
4 ГРП-ТП4 1 80 4,73 9,46 16 75
5 ГРП-ТП5 1 313 4,4 8,8 16 75
6 ГРП-ТП6 1 239 4,4 8,8 16 75
7 ГРП-ТП7 2 343 2,32 4,64 16 75
8 ГРП-ТП8 2 237 2,14 4,28 16 75

 

Таблица № 20.

Магистральная схема

Наименование

линии

Кол-во линий

Длина,

м

, норм. режим, А

, авар. режим, А

Сечение, мм2

, А

1 ГРП-ТП1 1 81 15,12 30,24 16 75
2 ТП1-ТП2 1 76 5,04 10,08 16 75
3 ГРП-ТП3 1 27 17,67 35,34 16 75
4 ТП3-ТП4 1 61 4,73 9,46 16 75
5 ТП4-ТП8 1 138 2,14 4,28 16 75
6 ТП8-ТП6 1 40 4,4 8,8 16 75
7 ТП6-ТП5 1 88 4,4 8,8 16 75
8 ТП5-ТП7 1 16 2,32 4,64 16 75

 

4.9 Выбор сечений по экономической плотности тока

ТМ=4500 ч


Таблица № 21.

Радиальная схема

Наименование линии Кол-во линий

, А

,

Fэ,

мм2

Принятое сечение, мм2

1 ГРП-ТП1 1 5,04 1.4 3,60 16
2 ГРП-ТП2 1 5,04 1.4 3,60 16
3 ГРП-ТП3 1 4,73 1.4 3,38 16
4 ГРП-ТП4 1 4,73 1.4 3,38 16
5 ГРП-ТП5 1 4,4 1.4 3,14 16
6 ГРП-ТП6 1 4,4 1.4 3,14 16
7 ГРП-ТП7 2 2,32 1.4 1,66 16
8 ГРП-ТП8 2 2,14 1.4 1,53 16

 

Таблица № 22.

Магистральная схема

Наименование

линии

Кол-во линий

, А

,

Fэ,

мм2

Принятое сечение, мм2

1 ГРП-ТП1 1 15,12 1.4 10,80 16
2 ТП1-ТП2 1 5,04 1.4 3,60 16
3 ГРП-ТП3 1 17,67 1.4 12,62 16
4 ТП3-ТП4 1 4,73 1.4 3,38 16
5 ТП4-ТП8 1 2,14 1.4 1,53 16
6 ТП8-ТП6 1 4,4 1.4 3,14 16
7 ТП6-ТП5 1 4,4 1.4 3,14 16
8 ТП5-ТП7 1 2,32 1.4 1,66 16

 


5. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ СРАВНЕНИЕ ВАРИАНТОВ

 

5.1 Определение капитальных затрат

 

Кабельные линии

 

Таблица № 23.

Радиальная схема

Наим.

линии

Кол-во линий Длина, м Сумм. длина, м

Сечение,

мм2

Уд. стоим. в ценах 1980, тыс.руб км

Уд. стоим. в ценах 2007, тыс.руб км

Стоим. линий, тыс. рублей
1 ГРП-ТП1 1 84 84 16 1.76 70,4 5,91
2 ГРП-ТП2 1 151 151 16 1.76 70,4 10,63
3 ГРП-ТП3 1 260 260 16 1.76 70,4 18,30
4 ГРП-ТП4 1 80 80 16 1.76 70,4 5,63
5 ГРП-ТП5 1 313 313 16 1.76 70,4 22,04
6 ГРП-ТП6 1 239 239 16 1.76 70,4 16,83
7 ГРП-ТП7 2 343 686 16 1.76 70,4 48,29
8 ГРП-ТП8 2 237 474 16 1.76 70,4 33,37

 

ИТОГО

10

 

2287

 

 

 

161,00

 


Таблица № 24.

Магистральная схема

Наим.

линии

Кол-во линий Длина, м Сумм. длина, м

Сечение,

мм2

Уд. стоим. в ценах 1980, тыс.руб

км

Уд. стоим. в ценах 2007, тыс.руб

км

Стоим. линий, тыс. рублей
1 ГРП-ТП1 1 81 162 16 1.76 70,4 11,4048
2 ТП1-ТП2 1 76 152 16 1.76 70,4 10,7008
3 ГРП-ТП3 1 27 54 16 1.76 70,4 3,8016
4 ТП3-ТП4 1 61 122 16 1.76 70,4 8,5888
5 ТП4-ТП8 1 138 276 16 1.76 70,4 19,4304
6 ТП8-ТП6 1 40 80 16 1.76 70,4 5,632
7 ТП6-ТП5 1 88 176 16 1.76 70,4 12,3904
8 ТП5-ТП7 1 16 32 16 1.6 70,4 2,2528

 

ИТОГО

8

 

1054

 

 

 

74,20

 

Прокладка кабельных линий в траншеях

 

Таблица № 25.

Радиальная схема

Количество кабелей в одной траншее Длина, м

Удельная стоимость в ценах 1980, тыс.руб

км

Удельная стоимость в ценах 2007, тыс.руб

км

Стоимость, тыс. рублей
1 6 26 3,62 144,8 3,7648
2 5 61 3,29 131,6 8,0276
3 4 138 2,86 114,4 15,7872
4 3 40 2,31 92,4 3,696
5 2 172 1,78 71,2 12,2464
6 1 76 1,27 50,8 3,8608

 

ИТОГО

 

 

 

47,3828


Таблица № 26.

Магистральная схема

Количество кабелей в одной траншее Длина, м

Удельная стоимость в ценах 1980, тыс.руб

км

Удельная стоимость в ценах 2007, тыс.руб

км

Стоимость, тыс. рублей
1 2 397 1.78 71,2 28,2664
2 1 112 1.27 50,8 5,6896

 

ИТОГО

 

 

 

33,956

 

Таблица № 27.

Стоимость ячеек отходящих линий ГРП

схема Количество ячеек ГРП Стоимость ячейки в ценах 1980 г., тыс. рублей Стоимость ячейки в ценах 2007 г., тыс. рублей Стоимость, тыс. рублей
1 Радиальная схема 10 2.1 84 840
2 Магистральная схема 4 2.1 84 336

Таблица № 28.

Суммарные капитальные затраты

схема Кабельные линии Строительная часть Ячейки ГРП Итого
1 Радиальная схема 161 47,38 840 1048,38
2 Магистральная схема 74,2 33,96 336 444,16

 

5.2 Определение издержек на эксплуатацию

 

Отчисления на амортизацию и обслуживание

Таблица № 29.

Радиальная схема

Вид оборудования Норма отчислений, % Капитальные затраты, тыс. рублей Издержки, тыс. рублей
1 Кабели 6,3 161 10,14
2 Строительная часть 6,3 47,38 2,98
3 Ячейки ГРП 1,04 840 8,74

 

ИТОГО

 

1048,38

21,86

 

Таблица №30.

Магистральная схема

Вид оборудования Норма отчислений, % Капитальные затраты, тыс. рублей Издержки, тыс. рублей
1 Кабели 6.3 74,2 4,67
2 Строительная часть 6.3 33,96 2,14
3 Ячейки ГРП 1.04 336 3,49

 

ИТОГО

 

444,16

10,31

 

Стоимость потерь электроэнергии

Параметры кабельных линий

 

Таблица № 31.

Радиальная схема

Наименование линии Количество линий Длина, м

Сечение,

мм2

,

R,

Ом

1 ГРП-ТП1 1 84 16 1,94 0,16
2 ГРП-ТП2 1 151 16 1,94 0,29
3 ГРП-ТП3 1 260 16 1,94 0,50
4 ГРП-ТП4 1 80 16 1,94 0,16
5 ГРП-ТП5 1 313 16 1,94 0,61
6 ГРП-ТП6 1 239 16 1,94 0,46
7 ГРП-ТП7 2 343 16 1,94 0,67
8 ГРП-ТП8 2 237 16 1,94 0,46

 

Таблица № 32.

Магистральная схема

Наименование линии Количество линий Длина, м

Сечение,

мм2

,

R,

Ом

1 ГРП-ТП1 1 81 16 1,94 0,16
2 ТП1-ТП2 1 76 16 1,94 0,15
3 ГРП-ТП3 1 27 16 1,94 0,05
4 ТП3-ТП4 1 61 16 1,94 0,12
5 ТП4-ТП8 1 138 16 1,94 0,27
6 ТП8-ТП6 1 40 16 1,94 0,08
7 ТП6-ТП5 1 88 16 1,94 0,17
8 ТП5-ТП7 1 16 16 1,94 0,03

 

Потери мощности

 

Таблица № 33.

Радиальная схема

Наименование линии Количество линий

R,

Ом

, А

Потери в одной КЛ, кВт Суммарные потери, кВт
1 ГРП-ТП1 1 0,16 5,04 0,004064 0,004064
2 ГРП-ТП2 1 0,29 5,04 0,007366 0,007366
3 ГРП-ТП3 1 0,50 4,73 0,011186 0,011186
4 ГРП-ТП4 1 0,16 4,73 0,00358 0,00358
5 ГРП-ТП5 1 0,61 4,4 0,01181 0,01181
6 ГРП-ТП6 1 0,46 4,4 0,008906 0,008906
7 ГРП-ТП7 2 0,67 2,32 0,003606 0,007212
8 ГРП-ТП8 2 0,46 2,14 0,002107 0,004213

 

ИТОГО

 

 

 

 

0,058337

 

Таблица № 34.

Магистральная схема

Наименование линии Количество линий

R,

Ом

, А

Потери в одной КЛ, кВт Суммарные потери, кВт
1 ГРП-ТП1 1 0,16 15,12 0,036578 0,036578
2 ТП1-ТП2 1 0,15 5,04 0,00381 0,00381
3 ГРП-ТП3 1 0,05 17,67 0,015611 0,015611
4 ТП3-ТП4 1 0,12 4,73 0,002685 0,002685
5 ТП4-ТП8 1 0,27 2,14 0,001236 0,001236
6 ТП8-ТП6 1 0,08 4,4 0,001549 0,001549
7 ТП6-ТП5 1 0,17 4,4 0,003291 0,006582
8 ТП5-ТП7 1 0,03 2,32 0,000161 0,000323

 

ИТОГО

 

 

 

 

0,068374


Время максимальных потерь

=2886.21 ч

 

Таблица № 35.

Годовые потери электроэнергии

схема

, ч

, кВт

, кВт×ч

,

, тыс. руб

1

Радиальная

схема

2886.2 0,058 167,3996 0.32 0,054
2 Магистральная схема 2886.2 0,068 196,2616 0.32 0,063

Таблица № 36.

Суммарные издержки

схема Амортизация и обслуживание, тыс. руб Стоимость потерь электроэнергии, тыс. руб Суммарные издержки, тыс. руб
1

Радиальная

схема

21,86 0,054 21,91
2 Магистральная схема 10,31 0,063 10,37

 

Расчетные затраты

 

 

Таблица № 37

схема Капитальные вложения, тыс.руб Суммарные издержки, тыс. руб Расчетные затраты
1

Радиальная

схема

1048,38 21,91 147,72
2 Магистральная схема 444,16 10,37 63,67

 

К исполнению принимается магистральный вариант.


6. Уточненный расчет выбранного варианта

 

6.1 Проверка выбранных сечений по потере напряжений

 

6.1.1 Сопротивления кабельных линий

Таблица № 38

Наименование линии Длина, м

Сечение,

мм2

R,

Ом

Хо

Х

Ом

1 ГРП-ТП1 81 16 1,94 0,15714 0,113 0,009153
2 ТП1-ТП2 76 16 1,94 0,14744 0,113 0,008588
3 ГРП-ТП3 27 16 1,94 0,05238 0,113 0,003051
4 ТП3-ТП4 61 16 1,94 0,11834 0,113 0,006893
5 ТП4-ТП8 138 16 1,94 0,26772 0,113 0,015594
6 ТП8-ТП6 40 16 1,94 0,0776 0,113 0,00452
7 ТП6-ТП5 88 16 1,94 0,17072 0,113 0,009944
8 ТП5-ТП7 16 16 1,94 0,03104 0,113 0,001808

6.1.2 Определение потери напряжения

Таблица № 39

Наименование

участка

Длина,м

R0,

ом/км

Х0,

ом/км

R,

ом

х,

ом

Рр

кВт

Qp,

кВАр

DU,В

норм.реж

DU,В

авар. режим

DU,

%

1 ГРП-ТП1 81 1,94 0,113 0,15714 0,00915 265,97 118,21 3,52
2 ТП1-ТП2 76 1,94 0,113 0,14744 0,00859 239,373 106,39 2,97
6,49 12,98 0,13
3 ГРП-ТП3 27 1,94 0,113 0,05238 0,00305 283,733 114,77 1,24
4 ТП3-ТП4 61 1,94 0,113 0,11834 0,00689 253,55 102,82 2,51
3,75 7,5 0,07
5 ТП4-ТП8 138 1,94 0,113 0,26772 0,01559 253,55 102,82 5,71
6 ТП8-ТП6 40 1,94 0,113 0,0776 0,00452 229,63 109,41 1,45
7,15 14,3 0,14
7 ТП6-ТП5 88 1,94 0,113 0,17072 0,00994 229,63 109,41 3,18
8 ТП5-ТП7 16 1,94 0,113 0,03104 0,00181 127,07 42,70 0,32

 

3,5 7 0,07

Выбранные сечения проходят по потере напряжения, так как DU<5%

6.2 Разработка системы внешнего электроснабжения

 

6.2.1 Определение расчетных электрических нагрузок предприятия

Таблица № 40

По данным

технологов

кВт

кВАр

Ки/Ко Расчетные мощности
Наименование эл/приемника

Кол-во

тр-ов

Суммарн.

ном.мощн.

Рн,кВт

Рр

кВт

Qp

кВАр

Sp

кВА

Ip

А

Iавр,

А

1 ТП1 1 564,5 265,97 118,21
2 ТП3 1 512,5 253,55 102,82
3 ТП5 1 524 229,63 109,41
4 ТП7 1 490 127,07 42,70
5 ТП8 1 330,5 117,27 39,36

ИТОГО

5

2421,5

993,49

412,5

0.39

0.95

943,82

391,88

1021,94

57

114

Расчетный ток в нормальном режиме равен 57А, в аварийном режиме 114А.

Выбираем кабель ААБ-3х50, допустимый ток 115 А. По экономической плотности тока сечение 50 мм2, принимается также ААБ-3х50.

6.2.2 Проверка по потере напряжения

Таблица № 41

Длина, м

R0,

Х0,

R,

Ом

X,

Ом

, А,

норм. режим

, А,

авар. режим

,

кВт

,

кВт

,

норм. режим

,

авар. режим

,

%

750 0,89 0,095 0,6675 0,071 57 114 943,82 391,88 53,136 106,27 1,06

6.3 Расчет токов короткого замыкания

Расчет сопротивлений трансформаторов

Rт= DРU2н.103/S2нт

Zт=Uk%U2н.10/Sнт

Хт=√Z2т-R2т

 

Таблица № 42.

Сопротивления трансформаторов

Тип и мощность потери

Напряжен.

короткого

замыкания

%

Ток

холостого

хода

%

Rт,ОМ Zт,ОМ Хт,ОМ

Холос-

ого

хода

Короткого

замыкания

1 ТМ-160 0,565 2,65 4,5 2,4 10,35 28,13 26,15
2 ТМ-400 1,05 5,5 4,5 2,1 3,44 11,25 10,71
ставление схемы замещения

Внешнее сопротивление

Хс=0,35

Rвн = Rкл= 0,6675 Ом

Хвнскл=0,35+0,071=0,421 Ом

Для расчета токов к.з. составляем схему замещения. Расчет производим в каждой точке к.з. отмеченной на схеме замещения. Для расчетов используем программу Tkz

 


Таблица № 43.

Сопротивления нулевой последовательности трансформаторов

Тип и мощность Прямая последовательность Нулевая последовательность

,

Ом

,

Ом

,

Ом

,

Ом

1 ТМ-160 10,35 26,15 113,85 209,2
3 ТМ-400 3,44 10,71 37,84 85,68

Файлы исходных данных

Структура файлов

NI NJ R1 X1 R0 X0 KT U фаза U

N1,N2 – номера узлов, ограничивающих ветвь;

R1, X1 – сопротивления прямой последовательности;

R0, X0 - сопротивления нулевой последовательности;

KT- коэффициент трансформации;

U – напряжение (ЭДС);

фаза U – фазовый угол напряжения (ЭДС).

Таблица № 44.

Результаты расчета токов КЗ

Схема Точка КЗ

,

кА

R

Ом

X

Ом

,

с

,

А

,

1 sh1.tkz K1 2,34 2,53 0,55 0,000692 1 3,31 0,72
2 K2 2,17 2,74 0,56 0,000651 1 3,07 0,62
3 K3 11,89 0,0096 0,18 0,059713 1,846 31,04 26,82
4 K4 5,95 0,0209 0,0427 0,006507 1,215 10,22 4,83
5 sh2.tkz K1 2,28 2,59 0,61 0,00075 1 3,22 0,68
6 K2 2,15 2,75 0,62 0,000718 1 3,04 0,60
7 K3 11,82 0,0096 0,0181 0,006005 1,189 19,88 19,00
8 K4 5,09 0,021 0,0428 0,006491 1,214 8,74 3,54
9 sh3.tkz K1 2,34 2,53 0,55 0,000692 1 3,31 0,72
10 K2 2,16 2,75 0,56 0,000649 1 3,05 0,61
11 K3 5,11 0,0206 0,0427 0,006601 1,22 8,82 3,57
12 K4 11,79 0,0099 0,018 0,00579 1,178 19,64 18,88
13 sh4.tkz K1 2,34 2,53 0,55 0,0007 1 3,3093 0,7156
14 K2 2,11 2,81 0,57 0,0006 1 2,984 0,582
15 K3 5,11 0,0206 0,0427 0,0066 1,22 8,815 3,567
16 K4 11,75 0,01 0,018 0,0057 1,17 19,52 18,74

Для проверки оборудования рассчитаем ударный ток короткого замыкания :

iу = ку Ö2 Iк

где ку – ударный коэффициент, ку=1+е-0,01/Та

Та=X/(R ω),

где ω=314

Тепловой импульс (кА2 с):

Вк = Iк2 (tотк + Та)

где tотк – время отключения:

tотк = tв + tрз

где tв=0,12 – время отключения выключателя;

tрз = 0,01 с – время срабатывания защиты;

Та – время затухания апериодической составляющей .


7. Выбор оборудования

Для обеспечения надежной работы аппаратуры и токоведущих частей электроустановки, необходимо правильно выбрать их по условиям длительной работы в нормальном режиме и кратковременной работы в режиме КЗ.

Выбор аппаратуры и токоведущих частей выполняется по номинальному току и напряжению:

Uуст£Uном

Iраб£Iном

Где Uуст - номинальное напряжение установки;

Uном- номинальное напряжение аппарата;

Iраб- рабочий ток присоединения, где установлен аппарат;

Iном- номинальный ток аппарата;

Выбранные по условиям нормального режима работы аппараты необходимо проверить по условиям КЗ, т.е. на электродинамическую и термическую устойчивость.

7.1 Выключатели

Выключатели выбираются по следующим условиям:

1.  по напряжению установки: Uном³Uуст;

2.  по номинальному току: Iном³Iраб;

3.  по конструктивному исполнению;

Выбранные выключатели проверяются:

1.  на электродинамическую стойкость: iу £ iпр;

где iу- ударный ток КЗ в цепи выключателя;

iпр- амплитудное значение предельного сквозного тока КЗ ;

2.  на термическую стойкость: Вк £ I2т*tт;

где Вк - тепловой импульс в цепи выключателя;

Iт - ток термической стойкости;

tт- время протекания тока термической стойкости ;

выбираем:

- выключатель на вводах и фидерах ГРП – 10 кВ:

ВМПЭ – 10 – 630 – 20 У3

Время отключения – tв = 0,12 с.

Время протекания тока термической стойкости tт = 8 с.

Ток термической стойкости Iт = 20 кА.

Условия проверки:

Iоткл ³ Iк, или 20 кА > 2,34 кА

iдоп ³ iу, или 52 кА > 3,31 кА

Вк = 0,72 кА2 с

2*tт ³ Вк, или 202 * 8 = 3200 > 0,72 кА2 с

7.2 Предохранители

Предохранители на напряжение свыше 1000 В используют для защиты трансформаторов напряжения в РУ-10 кВ. При этом применяют предохранители типа ПКН, ПК и ПКТ (трубчатые с кварцевым заполнителем).

Выбираем предохранитель для защиты ТН: ПКН 001-10У3.

Для защиты понижающих трансформаторов: ПКТ 101-10-31,5 У3.

Условия проверки:

Iоткл ³ Iк, или 31,5 кА > 2,34 кА

iдоп ³ iу, или 31,5 кА > 3,3 кА

7.3 Разъединитель

Разъединители выбираются по условиям:

1.  по напряжению установки: Uном³Uуст;

2.  по номинальному току: Iном³Iраб;

3.  по виду установки;

4.  по конструктивному исполнению: однополюсные или трехполюсные, с заземляющими ножами или без них, с вертикальным расположением главных ножей или с горизонтальным;

Выбранные разъединители проверяются:

1.на электродинамическую стойкость: iу £ iпр;

2.на термическую стойкость: Вк £ I2т*tт;

Выбираем:

РВ – 10/400 У3

Номинальный ток Iном=400А

Время протекания тока термической стойкости tт = 4 с.

Ток термической стойкости Iт = 16 кА.

Условия проверки:

iдоп ³ iу, или 41кА > 3,3 кА

Вк = 0,72 кА2 с

2*tт ³ Вк, или 162 * 4 = 1024 кА2 с >0,72 кА2 с

7.4 Выключатели нагрузки

Выбор осуществляется по номинальному рабочему току и напряжению

ВНПу – 10 / 400 – 10з У3.

Номинальный ток Iном=400А

 

7.5 Выбор измерительных трансформаторов

Контрольно-измерительные приборы устанавливаются для контроля за электрическими параметрами в схеме электроустановки и расчетов за электроэнергию, потребляемую и отпускаемую подстанцией.

1.  измерение тока выполняется на вводах силовых трансформаторов со стороны всех ступеней напряжения: на всех питающих и отходящих линиях;

2.  измерение напряжения осуществляется на шинах всех РУ;

3.  учет активной и реактивной энергии с помощью счетчиков выполняется на вводах низкого напряжения понизительных трансформаторов, фидерах потребителей, ТСН.

7.5.1 Трансформаторы тока

Трансформаторы тока выбираются по условиям:

1.  по напряжению установки: Uном³Uуст;

2.  по номинальному току: Iном³Iраб;

3.  по роду установки (внутренняя, наружная);

4.  по классу точности (при питании расчетных счетчиков – 0,5; щитовых приборов и контрольных счетчиков – 1; релейной защиты – 3 и 10);

Выбранные трансформаторы тока проверяются:

1.  на электродинамическую стойкость: iу £ iпр;

2.  на термическую стойкость: Вк £ I2т*tт;

Выбираем:

- на обмотке ВН ГРП и шинах РУ-10 кВ:

ТПЛ – 10 У3

U ном=10кВ; Iном1=200А; Iном2=5А

Время протекания тока термической стойкости tт = 3 с.

Ток термической стойкости Iт = 13,5 кА.

Ток динамической стойкости Iдин = 52,5 кА

Условия проверки:

Iдин ³ iу, или 52,5 кА > 3,3 кА

Вк = 0,72 кА2 с

2*tт ³ Вк, или 13,52 * 3 = 546,75 кА2 с > 0,72 кА2 с

по величине нагрузки вторичной цепи r2ном³r2

Присоединяем амперметр Э-378, счетчики активной САЧ-И672 и реактивной СРЧ-И673 энергии на обмотку класса точности 0,5

r2=rпр+rк+rприб

rк=0,05Ом

rпр=r*lрасч/q ; r=2,83*10-8 Ом м, q=4*10-6 м2, lрасч=30 м

rпр=2,83*10-8*30/4*10-6=0.12Ом

rприб=Sприб/ I2ном=(0,5+2,5+2,5)/52=0,22 Ом

r2=0,22+0,12+0,05=0,39 Ом £ 0,4 Ом

 

На обмотку класса точности 10Р присоединяем реле тока РТ-40/2 и реле времени РВМ-12

rприб=(0,2+10)/ 52=0,408 Ом

r2=0,408+0,12+0,05=0,578 Ом £ 0,6 Ом

 

Трансформатор тока на цеховых подстанциях ТЛК-10-3-У3

U ном=10кВ; Iном1=200А; Iном2=5А

1.  на электродинамическую стойкость: iу £ iпр;

3,3 кА £ 52кА

2.  на термическую стойкость: Вк £ I2т*tт;

Вк=0,72 кА2 с£ I2т*tт=102*3=300 кА2 с

3.  по величине нагрузки вторичной цепи r2ном ³ r2

Присоединяем амперметр Э-378, счетчики активной САЧ-И672 и реактивной СРЧ-И673 энергии на обмотку класса точности 0,5

r2=rпр+rк+rприб

rк=0,05Ом

rпр=r*lрасч/q ; r=2,83*10-8 Ом м, q=4*10-6м2, lрасч = 30 м

rпр=2,83*10-8*30/4*10-6=0.12Ом

rприб=Sприб/ I2ном=(0,5+2,5+2,5)/52=0,22 Ом

r2=0,22+0,12+0,05=0,39 Ом £ 0,4 Ом

 

На обмотку класса точности 10Р присоединяем реле тока РТ-40/2 и реле времени РВМ-12

rприб=(0,2+10)/ 52=0,408Ом

r2=0,408+0,12+0,05=0,578 Ом £ 0,6 Ом

7.5.2Трансформаторы напряжения

1.по напряжению установки: Uном³Uуст;

2.по конструкции и схеме соединения обмоток;

3.по классу точности (при питании расчетных счетчиков – 0,5; щитовых приборов и контрольных счетчиков и реле 1 и3);

4.на соответствие классу точности во вторичной нагрузке: S2 £ S2ном ;

Выберем НТМИ – 10-66У3

 


Таблица № 45.

Проверка соответствия класса точности во вторичной нагрузке

прибор Кол-во

число

катушек

Sкат,ВА

cosj

Sприб,ВА

sinj

Qприб,Вар

Вольтметр

Э-378

8 1 2 1 16 0 0
САЧ-И672 6 2 4 0,38 18,24 0,925 44,7
СРЧ-И673 2 3 7,5 0,38 17,1 0,925 41,623
51,34 86,025

S2=ÖР2прибå+Q2прибå=100,2 ВА£ S2ном =120 ВА


8. Расчет внутренней сети

Расчет внутренней сети будем производить для сборочного цеха. Для этого чертим план цеха, содержащий:

строительные элементы (стены, окна, двери и.т.д.), электрооборудование цеха, питающие линии.

Во внутренней сети цеха будем использовать закрытые комплектные шинопроводы различного сечения. Использование данного типа шинопроводов обусловлено хорошими техническими и эксплуатационными преимуществами по сравнению с открытыми шинопроводами и кабелями.

После выбора оборудования внутренней сети, производим проверку шинопроводов на:

1)  Допустимый ток

Iд = ток длительно допустимый,

Iд > Iн


Таблица № 46

Сборочный цех Рн,кВт n,шт Ps Ки cos tg n*Pн*Рн Qc,кВар Pc Кра Крр Рр Sp
1 ШР1 ААБ-3х50 Iдоп=120А 15 2 30 0,6 0,7 1,02 450 30,61 18,36 18
2 20 1 20 0,06 0,45 1,98 400 39,69 2,38 1,2
3 3 4 12 0,14 0,6 1,33 36 16,00 2,24 1,68
4 5 4 20 0,14 0,6 1,33 100 26,67 3,73 2,8
5 10 3 30 0,14 0,6 1,33 300 40,00 5,60 4,2
6 2 2 4 0,14 0,6 1,33 8 5,33 0,75 0,56
7 60 1 60 0,55 0,95 0,33 3600 19,72 10,85 33
176 0,35 4894 43,91 61,44 6,3 0,95 1,1 58 48 76 109,01
8 ШР2 ААБ-3х35 Iдоп=95А 5 1 5 0,35 0,65 1,17 0 5,85 2,05 1,75
9 18 2 36 0,06 0,45 1,98 450 71,44 4,29 2,16
10 8 4 32 0,06 0,45 1,98 180 63,50 3,81 1,92
11 6 5 30 0,65 0,8 0,75 588 22,50 14,63 19,5
12 14 3 42 0,65 0,8 0,75 300 31,50 20,48 27,3
104 0,47 1068 38,91 48,72 10 0,9 1,1 44 43 61 88,44
13 ШР3 ААБ-3х35 Iдоп=95А 7 5 35 0,14 0,6 1,33 245 46,67 6,53 4,9
14 6 2 12 0,65 0,8 0,75 72 9,00 5,85 7,8
15 55 1 55 0,25 0,65 1,17 256 64,30 16,08 13,75
16 10 3 30 0,06 0,45 1,98 400 59,54 3,57 1,8
17 20 1 20 0,06 0,45 1,98 300 39,69 2,38 1,2
18 15 2 30 0,3 0,35 2,68 25 80,29 24,09 9
19 10 3 30 0,65 0,8 0,75 196 22,50 14,63 19,5
20 7 4 28 0,55 0,95 0,33 0 9,20 5,06 15,4
138 0,34 921 49,73 46,9 21 0,85 1 40 50 64 91,99

Расчет заземляющего устройства

Расчет заземляющего устройства предлагается выбрать по методике:
В основе расчета положен графо-аналитический метод, основанный на применении теории подобия, которая предусматривает:
1) замену реального грунта с изменяющимися по глубине удельным сопротивлением
эквивалентной двухслойной структурой с сопротивлением верхнего слоя 1, толщиной h и сопротивлением нижнего слоя 2, значения которых определяются методом вертикального электрического зондирования.
2) замену реального сложного заземляющего контура, состоящего из системы вертикальных электродов, объединенных сеткой с шагом 4 - 20 м. и любой конфигурации- эквивалентной квадратной расчетной моделью с одинаковыми ячейками, однослойной структурой земли (rэ) при сохранении их площадей (s), общей длины вертикальных (Lа), горизонтальных (Lг) электродов, глубины их замыкания (Rэ) и напряжения прикосновения (Uпр).
S = 48600

м2

Площ.
h = 1,8 м толщина верхнего слоя земли
Принимаются расчетные величины:
1) число горизонтальных заземлителей:
Lг = (22 - 25) (S) = 4849,99
2) число вертикальных электродов:
nв = (0,3 -0,35) (S)= 66,14
3) длина вертикального электрода:
lв = 2 h = 3,6 м;
4) общая длина вертикальных электродов:
Lв =nв lв= 237,6 м;
5) расстояние между вертикальными электродами:
а = 2 lв = 7,2 м;
6) глубина заложения горизонтальных электродов:
hг = (0,5 - 0,8) = 0,7 м;
Сопротивление заземляющего контура:
Rэ = (А э/(S))+(э/(Lг+Lв)) = 0,24376 Ом
где э = 115,2 Ом м - эквивалентное сопротивление грунта;
(lв+hг)/S = 0,0195 < 0,1
А = 0,423146
Напряжение прикосновения:
Uпр = Iк Rэ кпр = 104,587 В < Uпр = 140 В;
условие выполняется
Iк = 2542,1 А
кпр= 0,16878

Вывод

В курсовом проекте рассчитаны электрические нагрузки цехов, определен центр электрических нагрузок (рис.5). Выбрано место положения главной распределительной подстанции (рис.6). Рассчитаны мощности цехов с учетом потерь в трансформаторах и с учетом компенсации реактивной мощности на низкой стороне. Выбраны кабели. Рассмотрены два варианта схем электроснабжения радиальная и магистральная схемы, по стоимости схем выбрана магистральная схема электроснабжения. Рассчитаны ток короткого замыкания для РУ-10 кВ, выбрано и проверено оборудование для магистральной схемы.


Литература

1. Системы электроснабжения справочные материалы к курсовому проектированию. Иркутск2002.