Курсовая работа: Уравнение и функция Бесселя
Содержание
Задание на курсовую работу ....................................................................... 2
Замечания руководителя .............................................................................. 3
1. Бесселевы функции с любым индексом ................................................... 5
2. Формулы приведения для бесселевых функций ..................................... 10
3. Бесселевы функции с полуцелым индексом ............................................. 13
4. Интегральное представление бесселевых функций с целым индексом .. 15
5. Ряды Фурье-Бесселя ................................................................................. 18
6. Асимптотическое представление бесселевых функций с целым индексом для больших значений аргумента ...................................................................................... 23
Список литературы ...................................................................................... 30
1. Бесселевы функции с любым индексом
Уравнение Лапласа в цилиндрических координатах
Чтобы объяснить происхождение бесселевых функций, рассмотрим уравнение Лапласа в пространстве:
. (1)
Если перейти к цилиндрическим координатам по формулам:
,
,
,
то уравнение (1) примет следующий вид:
. (2)
Поставим задачу: найти все такие решения уравнения, которые могут быть представлены в виде произведения трех функций, каждая из которых зависит только от одного аргумента, то есть найти все решения вида:
,
где ,
,
предполагаются дважды
непрерывно дифференцируемыми.
Пусть есть решение
упомянутого вида. Подставляя его в (2), получим:
,
откуда (после деления на )
.
Записав это в виде:
,
найдем, что левая часть
не зависит от , правая не зависит от
,
;
следовательно, общая величина этих выражений есть некоторая постоянная
. Отсюда:
;
;
;
;
.
В последнем равенстве
левая часть не зависит от , правая не зависит от
;
следовательно, общая величина этих выражений есть некоторая постоянная
. Отсюда:
,
;
,
.
Таким образом, ,
,
должны
удовлетворять линейным дифференциальным уравнениям второго порядка:
,
(3)
,
,
из которых второе и третье есть простейшие линейные уравнения с постоянными коэффициентами, а первое является линейным уравнением с переменными коэффициентами нового вида.
Обратно, если ,
,
удовлетворяют
уравнениям (3), то
есть решение уравнения (2). В
самом деле, подставляя
в левую часть (2) и деля затем на
, получим:
.
Таким образом, общий вид
всех трех решений уравнения (2), которые являются произведением трех функций,
каждая из которых зависит от одного аргумента, есть , где
,
,
– любые решения уравнений (3)
при любом выборе чисел
,
.
Первое из уравнений (3) в
случае ,
называется
уравнением Бесселя. Полагая в этом случае
, обозначая независимую переменную
буквой
(вместо
), а
неизвестную функцию – буквой
(вместо
), найдем, что уравнение Бесселя
имеет вид:
. (4)
Это линейное дифференциальное уравнение второго порядка с переменными коэффициентами играет большую роль в приложениях математики. Функции, ему удовлетворяющие, называются бесселевыми, или цилиндрическими, функциями.
Бесселевы функции первого рода
Будем искать решение уравнения Бесселя (4) в виде ряда:
.
Тогда
,
,
,
.
Следовательно, приходим к требованию
или к бесконечной системе уравнений
,
которая распадается на две системы:
Первая из них
удовлетворится, если взять … Во второй системе
можно взять
произвольно; тогда
… однозначно определяются (если
не является
целым отрицательным числом). Взяв
,
найдем последовательно:
,
,
,
и в качестве решения уравнения (4) получим ряд:
Этот ряд, формально
удовлетворяющий уравнению (4), сходится для всех положительных значений и,
следовательно, является решением уравнения (4) в области
(в случае целого
в области
).
Функция
(5)
называется бесселевой
функцией первого рода с индексом . Она является одним из решений
уравнения Бесселя (4). В случае целого неотрицательного индекса
получим:
, (5`)
и, в частности,
. (5``)
Общее решение уравнения Бесселя
В случае нецелого индекса
функции
и
являются
решениями уравнения (4). Эти решения линейно независимы, так как начальные
члены рядов, изображающих эти функции, имеют коэффициенты, отличные от нуля, и
содержат разные степени
. Таким образом, в случае нецелого
индекса общее решение уравнения Бесселя есть:
. (6)
Если (целое отрицательное
число), то функция, определяемая формулой (5) (учитывая, что
равно нулю для
…), принимает
вид:
(5```)
или, после замены индекса
суммирования на
,
, (7)
откуда видно, что удовлетворяет
вместе с
уравнению
Бесселя
.
Но формула (6) в случае
целого уже
не дает общего решения уравнения (4).
Полагая
(
– не целое) (8)
и дополняя это
определение для (целое число) формулой:
, (8`)
получим функцию ,
удовлетворяющую уравнению Бесселя (4) и во всех случаях линейно независимую от
(в случае
, где
– целое).
Функция
называется
бесселевой функцией второго рода с индексом
. Общее решение уравнения Бесселя
(4) можно записать во всех случаях в виде:
. (9)
2. Формулы приведения для бесселевых функций
Имеем:
;
;
,
;
.
Следовательно,
. (10)
Таким образом, операция (состоящая в
дифференцировании с последующим умножением на
), примененная к
, повышает в этом
выражении индекс
на единицу и меняет знак.
Применяя эту операцию
раз, где
– любое натуральное число,
получаем:
. (10`)
Имеем:
;
Следовательно,
. (11)
Таким образом, операция , примененная к
, понижает
в этом выражении индекс
на единицу. Применяя эту операцию
раз,
получаем:
. (11`)
Из выведенных формул можно получить некоторые следствия. Используя (10), получим:
;
;
.
Отсюда, в частности,
следует, что . Используя (11), получим:
;
;
.
Почленное сложение и вычитание полученных равенств дает:
, (12)
. (13)
Формула (13) позволяет
выразить все бесселевы функции с целыми индексами через ,
. Действительно, из (13)
находим (полагая
):
, (13`)
откуда последовательно получаем:
,
, …………………
3. Бесселевы функции с полуцелым индексом
Бесселевы функции, вообще
говоря, являются новыми трансцендентными функциями, не выражающимися через
элементарные функции. Исключение составляют бесселевы функции с индексом , где
– целое. Эти
функции могут быть выражены через элементарные функции.
Имеем:
,
,
следовательно,
.
Но , значит:
. (14)
Далее
,
,
следовательно,
.
Но , поэтому
. (15)
С помощью (10`) находим:
,
а учитывая (14)
,
следовательно, при целом
положительном
. (14`)
С помощью (11`) находим:
,
но в силу (15)
,
и, следовательно, при
целом положительном
. (15`)
4. Интегральное представление бесселевых функций с целым индексом
Производящая функция системы функций
Рассмотрим систему функций
(с любой общей
областью определения), пронумерованных с помощью всех целых чисел:
Составим ряд
,
где – комплексная
переменная. Предположим, что при каждом
(принадлежащем области
определения рассматриваемых функций) этот ряд имеет кольцо сходимости,
содержащее внутри себя единичную окружность
. В частности, это кольцо может
представлять собой полную плоскость комплексной переменной без точек 0 и ∞.
Функция
(16)
(где x лежит в области определения функций
системы ,
– внутри
кольца сходимости, соответствующего рассматриваемому значению
) называется
производящей функцией системы
.
Обратно, пусть задана
функция ,
где
пробегает
некоторое множество,
находится внутри некоторого
кольца, зависящего от
, с центром 0 и содержащего внутри
себя единичную окружность. Тогда, если
при каждом
аналитична относительно
внутри
соответствующего кольца, то
есть производящая функция
некоторой системы
функций. В самом деле, разложив
при каждом
функцию
в ряд
Лорана по степеням
:
,
найдем, что система
коэффициентов этого ряда будет искомой системой
.
Формулы для коэффициентов
ряда Лорана позволяют выразить функции рассматриваемой системы через
производящую функцию. Применяя эти формулы и преобразовывая затем интеграл
вдоль единичной окружности
в простой интеграл, получим:
. (17)
Производящая функция системы бесселевых функций с целыми индексами
Покажем, что для системы
бесселевых функций первого рода с целыми индексами (
…) производящая функция есть:
.
Имеем:
,
,
откуда после почленного перемножения этих равенств найдем:
(так как в предпоследней
внутренней сумме и
были связаны зависимостью
, то мы могли
положить
,
получив суммирование по одному индексу
). В последней внутренней сумме
суммирование производится по всем целым
, для которых
, следовательно, при
это будет
; при
это будет
. Таким
образом, во всех случаях внутренняя сумма есть
в силу формул (5`) и (5```).
Итак,
, (18)
но это и доказывает, что есть
производящая функция для системы
.
Выведем некоторые
следствия из формулы (18). Полагая в ней , получим:
,
откуда после разделения
действительной и мнимой части (учитывая, что )
(18`)
(18``)
Заменяя в (18`) и (18``) на
, найдем:
,
(18```)
. (18````)
Интегральное представление Jn(x)
Так как, по доказанному,
при имеем
, то по
формуле (17) получаем (используя в преобразованиях формулы Эйлера):
где принято во внимание,
что есть
четная функция от
есть нечетная функция от
. Итак,
доказано, что для любого целого числа
. (19)
Формула (19) дает
представление бесселевых функций с целым индексом в виде определенного
интеграла, зависящего от параметра . Эта формула называется
интегральным представлением Бесселя для
, правая часть формулы называется
интегралом Бесселя. В частности, при
найдем:
. (19`)
5. Ряды Фурье-Бесселя
Рассмотрим на каком-либо
интервале (конечном
или бесконечном) два дифференциальных уравнения
,
, (20)
где и
– непрерывные функции
на
. Пусть
и
– ненулевые
решения этих уравнений. Умножение на
и на
и последующее вычитание дают
.
Пусть и
принадлежат
и
, тогда после
интегрирования в пределах от
до
получим
. (21)
Если и
– соседние нули решения
, то между
и
сохраняет постоянный
знак, пусть, например,
на (
,
) (в противном случае следует
заменить
на
), тогда
,
(равенство
нулю исключено, так как
– ненулевое решение
дифференциального уравнения второго порядка). Если на
, то
должна, по крайней мере, раз
обращаться в нуль между
и
, так как иначе
сохранит постоянный
знак на (
,
). Пусть,
например,
на
(
,
) (в противном
случае заменяем
на
), и тогда из (21) получим
противоречие, ибо левая часть ≤0, а правая >0. Таким образом доказана
теорема сравнения Штурма: если P(x)<Q(x) на
рассматриваемом интервале I и
если y и z – ненулевые решения уравнений (20), то между каждыми двумя
соседними нулями y(x) находится по крайней мере один нуль
z(x).
Из теоремы сравнения
Штурма вытекают нижеследующие следствия. Если на
, то каждое ненулевое решение
уравнения
может
иметь на
не
более одного нуля (это легко видеть, если положить
и взять
). Если
на
(где
), то для всяких двух соседних
нулей
и
(
) каждого
ненулевого решения уравнения
имеем
(это легко видеть, если положить
, взять
и заметить,
что нулями
будут
только числа вида
,
целое). Если
на
(где
), то для всяких двух
соседних нулей каждого ненулевого решения уравнения
имеем
(это легко видеть, если положить
и взять
). Из
сказанного следует, что если
на
, то для всяких двух соседних
нулей
и
(
) каждого
ненулевого решения уравнения
имеем
.
Изложенное показывает,
что если непрерывна
на
и
превышает некоторое положительное число вблизи +∞, то каждое ненулевое
решение
уравнения
имеет на
бесконечно
много нулей. Если еще
вблизи
не обращается в нуль, то эти нули
образуют бесконечную возрастающую последовательность
, имеющую пределом +∞, а
если, кроме того,
, где
, то
.
Рассмотрим уравнение Бесселя
на интервале . Подстановка
приводит к
уравнению
.
Очевидно, и
имеют одни и те же
нули. Так как
, где
– целая функция, то
не имеет нулей
на
при
достаточно малом
, и так как
при
, то при каждом
нули
на
образуют
бесконечную возрастающую последовательность
причем .
Если , то
удовлетворит уравнению
на интервале (0, +∞).
Подстановка приводит
к уравнению
и, следовательно, удовлетворяет этому
уравнению. Таким образом, при любых положительных
и
имеем
, где
,
, где
,
откуда
,
следовательно,
, где
. (22)
Пусть теперь . Разложение
по степеням
начинается с
члена, содержащего
, разложение
по степеням
начинается с
члена, содержащего
, так как коэффициент при
равен нулю,
что легко видеть, исходя из формулы (5). Следовательно, из (22) при
получим
,
то есть
, (23)
откуда видно, что если и
являются
разными нулями функции
, то
. (23`)
Этим доказано, что при система
функций
на интервале является
ортогональной относительно веса
.
Переходя к пределу при в соотношении
и используя правило
Лопиталя, получим при всяком
, (24)
следовательно, если является нулем
функции
,
то
. (24`)
Таким образом, при каждом
всякой
непрерывной функции
на
, удовлетворяющей требованию
,
поставлен в соответствие ряд Фурье-Бесселя
, (25)
коэффициенты которого определяются формулами
. (25`)
Можно доказать, что
система функций на
, ортогональная относительно веса
, замкнутая. В
частности, если ряд Фурье-Бесселя (25) равномерно сходится к порождающей его
непрерывной функции
.
Можно показать, что если и
непрерывная на
и кусочно-гладкая
на
функция,
то ряд Фурье-Бесселя этой функции сходится к ней при
.
6. Асимптотическое представление бесселевых функций с целым индексом для больших значений аргумента
Пусть - положительная функция
и
- какая-нибудь
(вообще комплекснозначная) функция, определенные для достаточно больших
значений
.
Запись
при
означает, что найдутся
такие числа и
M, что при
имеем
.
Подобная запись
употребляется и в других аналогичных случаях. Например, если - положительная функция
и
-
какая-нибудь функция, определенные для достаточно малых положительных значений
, то запись
при
означает, что найдутся
такие числа и
, что
на
.
Вспомогательная лемма
Если дважды непрерывно
дифференцируема на
, то для функции
имеет место асимптотическое представление
при
.
Докажем эту лемму.
Заменяя на ,
получим:
. (26)
Рассмотрим интеграл,
фигурирующий в первом слагаемом правой части формулы (20). Заменяя на
, найдем:
,
но, заменив на , получим:
.
Если положительна, убывает и
стремиться к нулю при
, то
и
, а следовательно, и
есть
при
, поэтому
при
,
откуда
при
.
Итак, получаем асимптотическое представление:
при
. (27)
Рассмотрим теперь интеграл, фигурирующий во втором слагаемом правой части формулы (20). Имеем:
,
.
Очевидно, дважды непрерывно
дифференцируема на
, но существуют
и
, поэтому
становится непрерывно
дифференцируема на
. Интегрирование по частям дает:
,
где первое слагаемое
правой части есть
при
, а интеграл во втором слагаемом
несобственный при нижнем пределе мажорируется интегралом
,
который сходится, так как
при
;
следовательно, второе
слагаемое есть тоже при
.
Итак, имеем:
при
. (28)
Из (26), (27), (28) получаем искомое асимптотическое представление:
при
. (29)
Из этой формулы, переходя к сопряженным величинам, найдем еще:
при
. (29`)
Формулы (29) и (29`)
верны и для комплекснозначных функций .
Вывод асимптотической формулы для Jn(x)
Заменяя на
, получим:
(учитывая, что есть четная
функция от
,
а
есть
нечетная функция от
). Подстановка
дает:
,
где есть, очевидно, полином
n-й степени (полином Чебышева), так
как из формулы Муавра видно, что
есть полином n-й степени относительно
. Но
и, заменяя в первом из
этих интегралов на
, получим:
Так как и
на
имеют производные всех
порядков, то к двум последним интегралам применимы формулы (29) и (29`), и мы
получаем:
;
но ;
, следовательно,
.
Итак, имеем искомое асимптотическое представление бесселевой функции первого рода с целым индексом для больших значений аргумента:
при
. (30)
Эта формула показывает,
что с
точностью до слагаемого порядка
является затухающей гармоникой с
волной постоянной длины и амплитудой, убывающей обратно пропорционально
квадратному корню из абсциссы.
В частности,
при
; (30`)
при
. (30``)
Графики этих функций изображены ни рисунках 1 и 2.
Рассмотрим несколько примеров решения уравнения Бесселя.
1. Найти решение
уравнения Бесселя при
,
удовлетворяющее начальным
условиям при ,
и
.
Решение.
На основании формулы (5`) находим одно частное решение:
.
2. Найти одно из решений уравнения:
,
.
Решение.
Сделаем замену
.
При получим:
.
При будем искать решение в
виде обобщенного степенного ряда:
.
Уравнение на имеет вид
;
,
,
,
, поэтому
,
,
.
Рисунок 1 – График функции y=J0(x)
Рисунок 2 – График функции y=J1(x)
Список литературы
1. Пискунов Н. С. «Дифференциальное и интегральное исчисления», учебное пособие для втузов, М: Наука, 1985г., 560 стр.
2. Романовский П. И. «Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа», учебное пособие для втузов, М: Наука, 1983г., 336 стр.