Курсовая работа: Особенности размещения и развития атомной энергетики РФ. Противоречия, перспективы
Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
“Тульский государственныё университет”
Кафедра экономики и права
ЭКОНОМИЧЕСКАЯ ГЕОГРАФИЯ И РЕГИОНАЛИСТИКА
КОНТРОЛЬНО-КУРСОВАЯ РАБОТА
“Особенности размещения и развития атомной энергетики РФ. Противоречия, перспективы”
Тула 2006
Содержание
Введение | 2 |
Современное состояние атомной энергетики | 6 |
Двухэтапное развитие атомной энергетики | 8 |
Долгосрочные прогнозы | 10 |
Варианты структуры атомной энергетики | 14 |
Заключение | 17 |
Список использованной литературы | 18 |
Введение
Осуществляемая Минатомом государственная политика России по ядерной энергетике определена Программой развития атомной энергетики РФ на 1998-2005 годы и на период до 2010 года [1]. В ней поставлены задачи обеспечения безопасного и рентабельного функционирования ядерно-энергетического комплекса и создания усовершенствованных АЭС для строительства в следующем десятилетии.
Необходимость выработки долговременной стратегии вызвана тем, что завершающий период её первого этапа связан со сложными и противоречивыми процессами: энергонасыщенные развитые страны Америки и Европы в условиях стабилизации топливного рынка сворачивают свои ядерные программы, а наиболее заинтересованные в увеличении производства энергии развивающиеся страны, особенно Азии, начинают с повторения не во всём удачного пути, пройденного в XX веке ядерными державами.
Рост мировых потребностей в топливе и энергии при ресурсных и экологических ограничениях традиционной энергетики делает актуальной своевременную подготовку новой энергетической технологии, способной взять на себя существенную часть прироста энергетических нужд, стабилизируя потребление органического топлива. Активные исследования новых возобновляемых источников энергии и управляемого термоядерного синтеза пока не позволяют рассматривать их в качестве реалистических конкурентоспособных способов крупномасштабного замещения традиционного топлива.
Полувековое развитие атомной энергетики не привело пока к ядерной технологии, готовой в масштабах мировой энергетики конкурировать с традиционной энерготехнологией. Но исходя из большого практического опыта её первого этапа эта задача может быть решена.
Атомная энергетика обладает важными принципиальными особенностями по сравнению с другими энерготехнологиями:
· ядерное топливо имеет в миллионы раз большую концентрацию энергии и неисчерпаемые ресурсы;
· отходы атомной энергетики имеют относительно малые объёмы и могут быть надёжно локализованы, а наиболее опасные из них можно “сжигать” в ядерных реакторах.
Это открывает принципиально новые возможности и перспективы:
· в реализации такого топливного цикла, при котором из ограниченных природных запасов топливного сырья в течение тысячелетий можно получать необходимое количество энергии для удовлетворения энергопотребности человечества при любом прогнозируемом сценарии развития цивилизации;
· в осуществлении такого замкнутого технологического цикла, при котором воздействие атомной энергетики на окружающую среду будет существенно меньше, чем воздействие других традиционных энерготехнологий;
· в развитии энергетики для удалённых районов и для крупных транспортных средств;
· в замещении ядерным топливом органического топлива, которое в отличие от первого может быть эффективно использовано для других целей: химический синтез, транспорт и т.д.
Таким образом, атомная энергетика потенциально обладает всеми необходимыми качествами для постепенного замещения значительной части- энергетики на ископаемом органическом топливе и становления в качестве доминирующей энерготехнологии.
Создание необходимых предпосылок и реализация принципиальных особенностей атомной энергетики составляют основное содержание стратегии её развития.
Востребованность принципиальных особенностей атомной энергетики будет означать востребованность крупномасштабной атомной энергетики.
Значение развития ядерной технологии и атомной энергетики для России определяется её национальными интересами:
· ядерные технологии в рассматриваемый период остаются основой обороноспособности России;
· атомная энергетика без ограничений со стороны дешевого и общедоступного топлива открывает новые возможности в развитии экономики России;
· крупномасштабная атомная энергетика переносит центр тяжести в энергетическом производстве с топливодобывающих отраслей и транспорта топлива на современные наукоёмкие ядерные и сопутствующие неядерные технологии, а в экспорте - с топливного сырья на продукцию этих технологий, что даст новый импульс социальному и культурному развитию России;
· развивающаяся атомная энергетика позволит избежать опасностей, связанных с исчерпанием органического топлива и международными конфликтами из-за его источников, что будет способствовать стабилизации международной обстановки;
· вовлечение плутония из сокращаемых ядерных боеголовок и ядерного топлива (ЯТ) в сбалансированный по нему замкнутый топливный цикл быстрых реакторов будет способствовать режиму нераспространения; с переводом же в дальнейшем тепловых реакторов в торий-урановый цикл, построенный подобным образом, отпадёт нужда в технологиях обогащения урана и выделения Ри или 233U, что будет являться важной технологической предпосылкой к полному запрещению ядерного оружия и значительным фактором увеличения глобальной безопасности;
· способствуя безопасному экономическому и социальному развитию и сохранению среды обитания, атомная энергетика будет давать весомый вклад в рост продолжительности и качества жизни граждан России.
Инициатива России по выработке долговременной ядерной стратегии вполне соответствует ее традиции и статусу в этой области, ее собственным интересам и глубоким интересам мирового сообщества. Разработка стратегии должна быть нацелена на решение долговременных топливно-энергетических проблем не только России, а мира и исходить из представлений о вероятном развитии мировой энергетики в рассматриваемый период и далее.
Будущее атомной энергетики России зависит от решения трёх главных задач:
· поддержание безопасного и эффективного функционирования действующих АЭС и их топливной инфраструктуры;
· постепенное замещение действующих АЭС энергоблоками традиционных типов повышенной безопасности (энергоблоки третьего поколения) и осуществление на их основе в последующие 20-30 лет умеренного роста установленной мощности атомных энергоблоков и увеличения экспортного потенциала;
· разработка и овладение в промышленных масштабах ядерной энерготехнологией, отвечающей требованиям крупномасштабной энергетики по экономике, безопасности и топливному балансу.
Стратегия развития атомной энергетики России в первой половине XXI века утверждена решением коллегии Минатома 21 декабря 1999 г.
Современное состояние атомной энергетики
В России сегодня эксплуатируются 29 ядерных энергоблоков общей установленной электрической мощностью 21,2 ГВт. В их числе 13 энергоблоков с реакторами типа ВВЭР, 11 энергоблоков с реакторами типа РБМК, 4 энергоблока типа ЭГП Билибинской АТЭЦ с канальными водографитовыми реакторами и один энергоблок на быстрых нейтронах БН-6ОО. Россия имеет уникальный опыт эксплуатации реакторов на быстрых нейтронах - БН-350 и БН-600 (безаварийная работа в течение 20 лет).
Продолжается эксплуатация в режиме энергообеспечения канальных уран-графитовых промышленных реакторов в г. Северске (Сибирская АЭС) и г. Железногорске.
Кроме этого, на стадии высокой степени достройки находятся 5 энергоблоков: на Ростовской АЭС два блока с ВВЭР-1000, на Калининской АЭС ВВЭР-1000, на Балаковской АЭС ВВЭР-1000 и на Курской АЭС РБМК-1000.
В 1999 г. АЭС России только за счёт увеличения КИУМ выработали на ~ 1б % больше электроэнергии, чем в 1998 г. – 120 млрд. кВт·ч.
Несмотря на значительную роль, которую играет атомная энергетика, сегодня можно говорить об определённом её кризисе. Об этом свидетельствует наметившаяся перспектива падения её доли в мировом энергопроизводстве, сворачивание ядерных программ и разработок по быстрым реакторам в развитых странах Запада. Кроме того, АЭ подвергается критике, вплоть до требования ее полного закрытия. И хотя в подобной критике часто присутствует субъективизм, а то и полная необъективность, следует признать, что веские основания для критики имеются. Атомная энергетика, как и любая технология, требует совершенствования. Более того, имеются и особые основания для обостренного внимания к ней:
· потенциальная опасность аварий с большим экологическим и экономическим ущербом (реальность этой опасности подтверждена рядом аварий);
· накопление высокоактивных и долгоживущих отходов;
· связь ядерной энергетики с опасностью распространения ядерного оружия и ряд других.
Современные ядерные реакторы при существующем масштабе атомной энергетики являются достаточно безопасными установками. Несмотря на случавшиеся и случающиеся время от времени аварии и инциденты, нельзя забывать о том, что атомная энергетика наработала уже около 8000 реакторо-лет, из них -5000 без крупных аварий после апреля 1986 г. Это – серьезный успех ядерной технологии.
Безопасность настоящего поколения реакторов обеспечивается, главным образом, увеличением числа различных систем безопасности и систем ограничения выхода активности, ужесточением требований к оборудованию и персоналу. В результате АЭС становятся все более и более сложными и, следовательно, - более и более дорогими. Можно сказать, что при господствующей в настоящее время философии безопасности атомная энергетика близка к её экономически “предельному” уровню: дальнейшее наращивание систем безопасности ведёт к неминуемой потере конкурентоспособности атомной энергетики.
Анализ современного состояния атомной энергетики позволяет сделать следующие выводы:
· Эксплуатационная безопасность современной атомной энергетики является приемлемой для существующих масштабов её использования при условии постепенного замещения действующих энергоблоков на реакторы третьего поколения.
· Ресурсы природного рентабельно извлекаемого из недр урана ограничены. При доминирующей сегодня практике “сжигания” урана в тепловых реакторах эти ресурсы будут исчерпаны уже в следующем веке, как в России, так и в мире в целом. Переработка отработавшего топлива при рецикле Рu (МОХ-топливо) в тепловых реакторах может лишь ненамного продлить эти сроки, увеличивая затраты и снижая возможность последующего развития на быстрых реакторах.
· Конкурентоспособность атомной энергетики под бременем растущих расходов на безопасность, обеспечиваемую наращиванием инженерных систем, имеет устойчивую тенденцию к снижению.
Место АЭС в энергопроизводстве |
Доля в установленной мощности – 11,5% |
Доля в выработке электроэнергии – 15,6% |
Доля выработки в Европейской части России – 29,3% |
Годовой объем замещения газа =~ 40 млрд. м3 |
Особенности размещения атомной энергетики
Особенностями размещения предприятий атомной промышленности является то, что они могут находиться в отдалённых районах и не зависят от местоположения источников топлива, так как они используют уран, который имеет большое удельное содержание энергии. Но атомные реакторы нельзя располагать вблизи густонаселённых районов в связи с опасностью аварии. А также есть недостатки, связанные со сложностью строительства и эксплуатации, а также с трудностями связанными с переработкой и захоронением ядерных отходов, демонтажем ядерных установок АЭС (через 25-30 лет их работы).
Долгосрочные прогнозы
В настоящее время атомная энергетика сохраняет свои позиции как один из основных мировых источников энергии.
На ядерную энергию приходится - 6% мирового топливно-энергетического баланса и - 17% производимой электроэнергии.
Прогнозируется рост мощностей АЭС, прежде всего в странах Азии и Азиатско-тихоокеанского региона (Китай, Южная Корея, Индия, Япония), а также некоторых стран Восточной Европы (Чешская Республика, Словацкая Республика) и ряда стран, входящих в Содружество Независимых Государств (Россия, Украина, Казахстан). У целого ряда стран есть намерение вступить в “ядерный энергетический клуб” (Турция, Иран, Индонезия, Вьетнам). Однако по современным прогнозам МАГАТЭ, даже при осуществлении этих намерений общемировая доля ядерной электроэнергии в электропроизводстве в ближайшие 20-25 лет снизится до 12-15%.
Долгосрочные прогнозы мировой атомной энергетики весьма противоречивы, что отражает и отношение к ней общества, и неблагоприятную для нее конъюнктуру, и настроения в самом ядерном сообществе после неудавшейся попытки решить все ее проблемы с ходу.
Возможные варианты развития атомной энергетики России представлены на рис. 1.
Рис. 2. Воспроизводство и развитие мощностей АЭС до 2030 г.
По результатам прогнозных оценок Института систем энергетики им. Л.А. Мелентьева (ИСЭМ) СО РАН общий вклад атомной энергетики в мировой энергетический баланс может возрасти к 2100 г. до 30%.
Международное Энергетическое Агентство (IEA/OECD 1998) прогнозирует к 2020 г. снижение доли атомной энергетики в производстве электричества до -10% при сохранении общей установленной мощности атомных энергоблоков на сегодняшнем уровне.
Министерство энергетики США (EIA/DOE 1999) в качестве наиболее вероятного сценария рассматривает снижение к 2020 г. установленной мощности атомных энергоблоков на 10% в мире и на 25% в развитых странах.
Прогнозы 1999 г. Института энергетических исследований РАН указывают на возможность роста производства электроэнергии АЭС России до 160 млрд. кВт·ч в 2010 г. и до 330 млрд. кВт·ч в 2020 г.
Ожидаемое к середине XXI века почти удвоение населения Земли, в основном за счёт развивающихся стран, и приобщение их к индустриальному развитию может привести к удвоению мировых потребностей в первичной и к утроению (до 6000 ГВт) в электрической энергии. Атомная энергетика, отвечающая требованиям крупномасштабной энергетики по безопасности и экономике, могла бы взять на себя существенную часть прироста мировых потребностей в топливе и энергии [~4000 ГВт (эл.)]. Развитие к середине века мировой атомной энергетики такого масштаба явилось бы радикальным средством стабилизации потребления обычных топлив и предотвращения следующих кризисных явлений:
· истощения дешёвых ресурсов углеводородных топлив и возникновение конфликтов вокруг их источников, дестабилизации мирового топливного цикла;
· достижения опасных пределов выбросов продуктов химического горения.
Оценка потенциальных возможностей атомной энергетики
Мировые ресурсы урана в наиболее богатых месторождениях с концентрацией металла в рудах >=0,1% в настоящее время оцениваются следующим образом: разведанные - несколько более 5 млн. т, потенциальные – 10 млн. т.
За время жизни ( ~50 лет) тепловой реактор (ЛВР) мощностью 1 ГВт (эл.) потребляет ~ 104 природного U, поэтому 107 т U позволяют ввести 1000 блоков АЭС с такими реакторами, из которых ~ 350 ГВт (эл.) работают сейчас, а 650 ГВт (эл.) могут быть введены в следующем веке. В результате в первой половине XXI века мощности мировой АЭ на тепловых реакторах с учётом вывода из эксплуатации отработанных блоков могут вырасти вдвое, но ее вклад в производство энергии будет постепенно падать, а во второй половине века сойдет на нет.
Ежегодная потребность современной атомной энергетики России в природном уране составляет 2800-3300 т, а с учетом экспортных поставок ядерного топлива ~ 6000-7700 т. При имеющихся ресурсах урана (залежи в недрах, складские запасы на горнодобывающих предприятиях, запасы высокообогащённого урана) срок функционирования отечественной атомной энергетики на тепловых реакторах, если оставаться на уровне мощности - 20 ГВт (эл.), составляет ~ 80-90 лет. Замыкание топливного цикла тепловых реакторов с вовлечением энергетического плутония и регенерированного урана продлит этот срок на 10-20 лет в зависимости от способа изготовления регенерированного топлива.
Имеющиеся мировые и
российские запасы природного урана не могут обеспечить устойчивого
долговременного развития
атомной энергетики на тепловых реакторах.
Варианты структуры атомной энергетики
Развитие атомной энергетики в два этапа предполагает длительное сосуществование тепловых реакторов на 235U, пока есть дешёвый уран, и быстрых реакторов, которые вводятся на плутонии из оружейных запасов и из тепловых реакторов и практически не имеют ограничений по топливным ресурсам.
В двухкомпонентной структуре целесообразен постепенный переход тепловых реакторов на выгодный для них Th-U цикл с производством 233U для начальной загрузки и подпитки из Th-бланкетов быстрых реакторов. Двухкомпонентная структура атомной энергетики будущего имеет под собой веские основания, но важный для неё вопрос о пропорциях между быстрыми и тепловыми реакторами требует адекватного решения.
В предстоящие полвека, пока есть дешевый уран для тепловых реакторов, этот вопрос не имеет принципиального значения. Плутоний, получаемый в тепловых реакторах, целесообразно использовать для запуска быстрых реакторов, не требуя от них высоких коэффициентов воспроизводства и коротких времён удвоения плутония. Проблема топливообеспечения тепловых реакторов и участия в нём быстрых реакторов может возникнуть лишь за пределами рассматриваемого здесь периода, и при её решении нужно учитывать следующие обстоятельства:
· Производство электроэнергии растет наиболее быстро и составит в XXI веке около или более половины в мировом топливно-энергетическом балансе (табл.1) и поэтому остается главной сферой применения атомной энергетики, что снова выдвигает на первый план быстрые реакторы.
· В отличие от органической энергетики, где на топливо приходится ~60% издержек производства электроэнергии, затраты на ядерное топливо относительно малы (~20%), а основная часть издержек в АЭ - сооружение и обслуживание - уменьшается с увеличением мощности реакторов и АЭС, что делает производство электроэнергии на крупных АЭС доминирующим направлением атомной энергетики.
· Проблема коротких времён удвоения плутония и связанные с ней соображения о нежелательности участия быстрых реакторов в регулировании нагрузки в энергосистемах сегодня и в обозримом будущем не актуальны.
· Последние проекты АЭС с быстрыми и тепловыми реакторами указывают на значительное снижение разницы в их стоимости даже для быстрых реакторов традиционного типа. Разработка быстрых реакторов на основе принципа естественной безопасности позволяет рассчитывать на то, что капитальные затраты в АЭС с быстрыми реакторами нового поколения будут ниже, чем в современных АЭС с ЛВР.
· Требования высокого коэффициента воспроизводства и коротких времён удвоения плутония препятствуют реализации потенциала быстрых реакторов по экономичности и безопасности.
Таблица 1 [3]
Общее потребление первичных энергоносителей, доля первичных энергоносителей, используемых для производства электроэнергии и доля АЭС в потреблении первичных энергоносителей в регионах мира в 1997 г. и 2000 г.
Регион | 1997г. | 2000г. | ||||
Общее потребление ЭДж | Для производства электроэнергии, % | Доля АЭС, % | Общее потребление, ЭДж | Для производства электроэнергии, % | Доля АЭС, % | |
Северная Америка | 108,7 | 35,9 | 6,3 |
113 |
36 |
5,8 |
Латинская Америка | 28,7 | 29,6 | 0,7 |
31 |
30 |
0,6 |
Западная Европа | 62,6 | 41,3 | 12,9 |
64 |
42 |
13 |
Восточная Европа и страны б | 54,1 | 30,7 | 4,5 |
54 |
31 |
5,1 |
СССР Россия | 31 | 31 | 4,1 |
30,4 |
32 |
4,6 |
Африка | 17,2 | 21,5 | 0,7 |
19 |
22 |
0,7 |
Средний Восток и Южная Азия | 35,6 | 25,7 | 0,2 |
40 |
26 |
0,2 |
Юго-восточная Азия и Океания | 19,6 | 24,3 | - |
21 |
25 |
- |
Дальний Восток | 80,5 | 33,3 | 5,2 |
88 |
34 |
4,9 |
Всего в мире нижняя оценка | 406,9 | 33,0 | 5,4 |
430 |
33 |
5,1 |
Заключение
Итак, при любом варианте развития в крупномасштабной ядерной энергетике будущего могут найти свое место разные типы реакторов на тепловых нейтронах при доминирующей роли быстрых реакторов. Двухкомпонентную схему с покрытием дефицита топлива для тепловых реакторов за счёт избыточного производства в быстрых реакторах следует рассматривать лишь как отдалённую перспективу. В рассматриваемый период тепловые реакторы будут работать на 235U, но для следующих этапов следует начать подготовку их к переводу в торий-урановый цикл с производством недостающего 233U в ториевых бланкетах быстрых реакторов. При накоплении в них 233U с концентрацией в тории, необходимой для тепловых реакторов изготовление торий-уранового топлива не потребует извлечения чистого 233U.
Структура атомной энергетики России в рассматриваемый период будет в значительной степени определяться масштабами её востребованности. При умеренном росте установленной мощности АЭС атомная энергетика России останется в течение ближайших десятилетий практически однокомпонентной, с незначительной энергетической долей быстрых реакторов. В случае интенсивного развития атомной энергетики решающую роль в ней станут играть быстрые реакторы, т.к. топливная база тепловых реакторов в России не может обеспечить устойчивого роста установленной мощности (1-2 ГВт/год) и при таком варианте она будет исчерпана уже в первой половине XXI века.
В моей работе указаны актуальность использования атомной энергетики на сегодняшний день, особенности размещение данной отрасли, оценка её потенциальных возможностей и возможные пути её развития.
Список использованной литературы
1. Программа развития атомной энергетики Российской Федерации на 1998-2005 годы и на период до 2010 года: Постановление Правительства Российской Федерации от 21 июля 1998 г. № 815.
2. Белая книга ядерной энергетики /Под общ. ред. проф. Е.О. Адамова: Первое издание. М:ГУП НИКИЭТ, 1998. “Энергетика: цифры и факты”: По материалам МАГАТЭ “Energy, electricity and nuclear power...” IAEA, Vienna, 1998 (M.: ЦНИИатом-информ, 1999, № 1).
3. Nuclear Technology Review 2000: GOV/INF/2000/XXX/ Vienna: IAEA, 2000.
4. Nucl. Europe World-scan. 1998. N 11-12. P. 57-58.
5. Энергетическая стратегия России до 2020 г.: Проект. Минтопэнерго России, 2000.