Курсовая работа: Прогнозирование функций по методу наименьших квадратов
Министерство общего и профессионального образования
Московский Авиационный институт (государственный технический университет) «МАИ»
ОТЧЕТ
О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ
Курсовой проект по теории вероятностей и математической статистике
по теме
«Прогнозирование функций по методу наименьших квадратов»
Москва 2009
Реферат
В отчете содержится: 24 формулы, 10 рисунков.
Ключевые слова: тренд прогноза, логнормальный закон, шум, критерий χ2-Пирсона, проверка гипотез, оценки расхождения.
Целью данной работы было исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Для этого проводился машинный эксперимент с использованием программы Mathcad 14. Основой для построения случайной функции являлась линейная функция, на которую был наложен случайный шум, распределенный по логнормальному закону с параметрами М[шума]=0 (математическое ожидание шума) и D[шума]=D (дисперсия шума). После чего полученная случайная функция аппроксимировалась линейным трендом, а также исследовалось расхождение между трендом и прогнозом с последующей оценкой близости распределения расхождений наблюдений и распределения сгенерированного шума по критерию χ2-Пирсона.
Определения и формулы
Математическим ожиданием P(ξ=xi) дискретной случайной величины ξ называется сумма парных произведений всех возможных значений случайной величины на соответствующие им вероятности, т.е:
,
(1)
где хi – значение случайной величины, pi – вероятность этого значения, n – общее число значений.
Математическим ожиданием P(ξ=xi) непрерывной случайной величины ξ с плотностью распределения φ(x) называется число, определяемое равенством:
,
(2)
где φ(x) – плотность распределения случайной величины.
Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:
(3)
Для непрерывной случайной величины формула (3) будет представлена в виде:
(4)
Среднее квадратичное отклонение(СКО) – это статистическая величина, описывающая разброс значений изучаемой величины вокруг ее ожидаемого значения:
(5)
В математической статистике оперируют оценками числовых характеристик, которые ищутся по случайной выборке. В отличие от самих параметров, оценки содержат элемент случайности. К оценкам параметров предъявляют определенные требования:
а) состоятельность – оценка, соответствующая этому требованию, с увеличением объема выборки сходится по вероятности к самому параметру;
б) несмещенность – математическое ожидание такой оценки равно оцениваемому параметру;
в) эффективность – дисперсия эффективной оценки минимальна.
Оценка математического ожидания ищется по формуле:
, (6)
где n – объем случайной выборки. Оценка, вычисленная по формуле (6), называется так же статистическим средним.
Оценка дисперсии вычисляется по формуле:
, (7)
где m – оценка математического ожидания случайной величины.
Оценка С.К.О. вычисляется по формуле:
, (8)
т.е. корень квадратный из оценки дисперсии.
При генерации шума мы используем два закона: нормальное и логнормальное распределение.
Нормальный закон: Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности:
(9)
Функция распределения F(x) в рассматриваемом случае принимает вид:
(10)
График 1 – распределение плотности вероятности нормального закона:
Рисунок 1. Плотность вероятности нормального закона
Говорят, что случайная величина X имеет логнормальное распределение с параметрами μ, σ, если X = exp(Y), где Y имеет нормальное распределение с параметрами μ, σ. Случайная величина с логнормальным распределением является непрерывной, и принимает только положительные значения. Графики плотности (привязан к левой вертикальной оси ординат) и функции (привязан к правой оси ординат) логнормального распределения с параметрами μ = 0, σ = 0.7 приведен на следующем рисунке 2:
Рисунок 2. Логнормальное распределение
Плотность распределения логнормального закона:
(11)
Функция распределения:
(12)
Для определения степени расхождения теоретической кривой и статистических данных пользуются критериями согласия. Наиболее часто для проверки гипотезы о законе распределения используются 2 критерия: критерий λ-Колмогорова и критерий χ2-Пирсона.
Расчетное значение для критерия χ2-Пирсона вычисляется по формуле:
, где (13)
– (14)
вероятность попадания в интервал разбиения с номером i, mi – число значений функции в интервале разбиения, m, σ – математическое ожидание и с.к.о. случайной величины X, Φ* – интеграл вероятностей.
Чтобы определить функциональную зависимость между величинами по результатам наблюдений, используем метод наименьших квадратов (МНК):
Пусть из опыта получены точки:
x1, y1,
xn, yn
Требуется найти уравнение прямой y=ax+b (15), наилучшим образом согласующейся с опытными точками. Пусть мы нашли такую прямую. Обозначим через δi расстояние опытной точки от этой прямой (измеренное параллельно оси y).
Из уравнения (15) следует, что:
(16)
Чем меньше числа по абсолютной величине, тем лучше подобрана прямая (15). В качестве характеристики точности подбора прямой (15) можно принять сумму квадратов:
(17)
Покажем, как можно подобрать прямую (15) так, чтобы сумма квадратов S была минимальной. Из уравнений (16) и (17) получаем:
(18)
Условия минимума S будут равны для линейной функции:
(19)
(20)
Уравнения (19) и (20) можно записать в таком виде:
(21)
(22)
По уравнениям (21) и (22) легко найти a и b по опытным значениям xi и yi. Прямая (15), определяемая уравнениями (21) и (22), называется прямой, полученной по методу наименьших квадратов (этим названием подчеркивается то, что сумма квадратов S имеет минимум). Уравнения (21) и (22), из которых определяется прямая (15), называются нормальными уравнениями.
Введение
В качестве тренда процесса был выбран линейный тренд вида
Y=at+b, (23)
где а=1, b=2. Тренд процесса показан на рисунке 3.
Рисунок 3. График тренда
График прямой с учетом сгенерированного шума по логнормальному закону выглядит так:.
Рисунок 4. График прямой с учетом шума.
Наша задача в курсовом проекте заключается в определении насколько сильно шум влияет на прогнозирование. Для этого мы определяем расхождения между трендом и прогнозом и оцениваем степень расхождения из-за шума по критерию Пирсона
1. Построение прямой аппроксимирующей свойства тренда с помощью МНК
Наша ошибка сгенерирована по логнормальному закону с математическим ожиданием равным 0 и дисперсией равной 1. Гистограмма распределения шума представлена на рисунке 5.
Рисунок 5. (Гистограмма распределения значений шума по интервалам).
С помощью формул (21) и (22) вычислим коэффициенты линейного уравнения тренда с учетом шума с помощью метода МНК:
По найденным коэффициентам строим график прямой, которая аппроксимирует основные свойства линейного тренда. График показан на рисунке 6:
Рисунок 6. (Прямая, построенная по методу наименьших квадратов).
2. Прогнозирование дальнейшего продвижения тренда
Наша задача состоит в том, чтобы спрогнозировать дальнейшее поведение уравнения тренда и определить расхождения с спрогнозированными значениями.
Для этого увеличиваем участок наблюдения за линейным трендом без шума до τ =2t=50
График расхождения исходного тренда и аппроксимированного тренда по МНК виден на рисунке 7. (Yτ – исходный тренд; Zτ – аппроксимированный тренд по МНК)
Рисунок 7 (На рисунке показаны тренд и аппроксимирующая его свойства прямая, построенная по методу наименьших квадратов).
Расхождения вычислены на удаленно отрезке(τ=50):
Δ= Zτ - Yτ =0.864
Проведем серию из 25 экспериментов по вычислению расхождений Δ по модулю:
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Δ | 0.661 | 0.673 | 0.756 | 2.366 | 0.488 | 3.569 | 0.864 | 5.651 | 2.328 | 0.851 | 1.259 | 1.718 | 0.618 |
N | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|
Δ | 3.765 | 0.502 | 3.762 | 1.369 | 2.185 | 0.494 | 1.851 | 0.067 | 2.012 | 4.429 | 3.441 | 0.601 |
|
Рассчитаем среднее значение Δ и среднеквадратичное отклонение по формулам (6) и (8):
Δср=1.851; σ=1.484
График на рисунке 8 отображает расхождения между исходной функцией и прямыми, полученными в результате аппроксимации по МНК. Синим цветом показаны полученные прямые, красным - исходная функция.
Рисунок 8. (На рисунке показаны тренд и несколько прямых, построенных по методу наименьших квадратов и аппроксимирующих свойства тренда).
3. Анализ результатов эксперимента
Полученные значения расхождений Δ представим в виде гистограммы и эмпирической функции по интервалам на рисунке 9:
Рисунок 9. (На рисунке представлены гистограмма распределения значений Δ по интервалам, а так же график функции распределения Δ).
Из рисунков видно, что закон Δ больше всего похож на логнормальный, поэтому для сравнения оценки расхождения распределения сгенерируем выборку объемом в 25 (а так же выборки объемом 100, 500 и 1500) по логнормальному закону с математическим ожиданием 0 и дисперсией 1 и вычислим параметры.
Сгенерированная выборка:
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
xL | 3.532 | 0.494 | 1.002 | 3.027 | 2.441 | 0.055 | 0.116 | 1.229 | 0.54 | 0.302 | 1.104 | 2.161 | 1.358 |
N | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|
xL | 1.011 | 0.466 | 0.664 | 0.51 | 0.876 | 2.768 | 1.198 | 1.671 | 2.095 | 0.984 | 1.322 | 1.176 |
|
Оценки математического ожидания, дисперсии и СКО рассчитаем по формулам:
(24)
M[xL]=1.284; D[xL]=0.848; σ[xL]=0.921
На рисунке 10 показана гистограмма и эмпирическая функция по сгенерированной выборке:
Рисунок 10. (На рисунке показанная функций распределения, а так же гистограмма распределения значений по интервалам для случайной величины, распределенной по логнормальному закону распределения с выборкой 25).
4. Проверка близости по критерию χ2 Пирсона закона распределения расхождений наблюдений и сгенерированного шума
Проверим насколько расходятся значения при прогнозе и по тренду. Для этого определяются интервалы разбиения расхождений прогноза и вычисление вероятностей попасть в интервал по логнормальному закону с математическим ожиданием равным 0 и дисперсией 1 по формуле (9).
Далее посчитаем сумму квадратов расхождения между частотами и вероятностью попасть в интервал логнормального закона:
(25)
На основе суммы квадратов расхождения Δрасх можно посчитать расчетное значение критерия согласия Пирсона:
(26)
На полигоне частот (рисунок 11) показаны значения частоты распределения чисел по интервалам и вероятностей попадания в эти интервалы.
Теоретическое значение критического значения критерия Пирсона при уровне значимости α=0.1 и числом степеней свободы r=m-1 рассчитаем по формуле (11).
Рисунок 11.
(На рисунке показано расхождения между частотой попадания случайной величины в интервал и функцией распределения для попадания в этот интервал для выборок 25, 100, 500 и 1500. Случайная величина распределена по логнормальному закону распределения).
Ставится гипотеза: H0 – расхождение между прогнозом и трендом распределено по логнормальному закону
Количество экспериментов | Критическое значение χ² | Эмпирическое значение χ² | Решение |
25 | 21.064 | 26.135 |
Гипотеза H0 отвергается |
100 | 21.064 | 65.549 |
Гипотеза H0 отвергается |
500 | 21.064 | 102.753 |
Гипотеза H0 отвергается |
1500 | 21.064 | 241.778 |
Гипотеза H0 отвергается |
Рисунок 12.
(На рисунке показано расхождения между частотой попадания случайной величины в интервал и функцией распределения для попадания в этот интервал для выборок 25, 100, 500, 1500 и 10000. Случайная величина распределена по нормальному закону распределения, для проверки взято теоретическое распределение с параметрами mx=0 и Dx=1).
Поставим гипотезу: H0 – расхождение между прогнозом и трендом распределено по нормальному закону распределения (с параметрами mx=0 и Dx=1).
Количество экспериментов |
Критическое значение χ² | Эмпирическое значение χ² | Решение |
25 | 21.064 | 14.865 |
Гипотеза H0 принимается |
100 | 21.064 | 10.266 |
Гипотеза H0 принимается |
500 | 21.064 | 9.161 |
Гипотеза H0 принимается |
1500 | 21.064 | 32.575 |
Гипотеза H0 отвергается |
10000 | 21.064 | 114.286 |
Гипотеза H0 отвергается |
Отвержение гипотезы H0 о распределении случайной величины по нормальному закону при выборках 1500 и 10000 с параметрами mx=0 и Dx=1 свидетельствует об изменении параметров закона распределения (т.к. нормальный закон устойчив к линейным преобразованиям и сам закон не меняется), что является следствием линейных преобразований. Используем для проверки гипотезы о законе распределения с помощью критерия Пирсона теоретический закон распределения с дисперсией, равной оценке дисперсии отклонения прогноза от тренда, вычисленной по методу моментов.
Рисунок 13.
(На рисунке показано расхождения между частотой попадания случайной величины в интервал и функцией распределения для попадания в этот интервал для выборок 25, 100, 500, 1500 и 10000. Случайная величина распределена по нормальному закону распределения, для проверки взято теоретическое распределение с параметрами mx=0 и Dx= DΔ (DΔ =1.343; 1.149; 1,235; 1.158; 1.141)).
Поставим новую гипотезу: H0 – расхождение между прогнозом и трендом распределено по нормальному закону распределения (с параметрами mx=0 и Dx=DΔ).
Количество экспериментов |
Критическое значение χ² | Эмпирическое значение χ² | Решение |
25 | 21.064 | 12.251 |
Гипотеза H0 принимается |
100 | 21.064 | 11.616 |
Гипотеза H0 принимается |
500 | 21.064 | 11.503 |
Гипотеза H0 принимается |
1500 | 21.064 | 14.31 |
Гипотеза H0 принимается |
10000 | 21.064 | 11.275 |
Гипотеза H0 принимается |
Отклонение тренда от прогноза при шуме, распределенном по нормальному закону распределении, так же подчиняется нормальному закону распределения, что было подтверждено экспериментально.
а) на основании проведенных экспериментов и анализа полученных данных можно сделать вывод, подтверждающий, что логнормальное распределение является неустойчивым к линейным преобразованиям, причем с ростом числа наблюдений расхождение будет существенно возрастать;
б) при
аппроксимации линейного тренда, к которому был курсовые - 700 р.