Лабораторная работа: Изучение электрических свойств p-n перехода

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Математический факультет

Лабораторная работа №5

Изучение электрических свойств p-n перехода


Выполнила: студентка гр. 47а

Нигматьянова В. Д.

Проверила:

Сагдаткиреева М. Б.

Уфа – 2010


 

Изучение свойств p-n перехода

 

Приборы и принадлежности: измерительное устройство, объекты исследования (диоды).

Цель работы: 1) Изучение свойств p-n перехода.

2)Получение вольтамперной характеристики.

3)Получение вольтфарадной характеристики.

4)Определение концентрации примеси.

Краткая теория.

Полупроводники могут иметь два типа примесной проводимости: электронную (n-тип), обусловленную донорными примесями, и дырочную (p-тип), обусловленную акцепторными примесями. В n-полупроводнике основные носители заряда – электроны, а в p-полупроводнике-дырки. Кроме основных носителей заряда в каждом веществе в значительно меньшем количестве содержатся и неосновные носители заряда противоположного знака. Они возникают за счет разрушения ковалентных связей.

Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой – дырочную проводимость, называется p-n переходом. Практически p-n переход создается не механическим контактом двух полупроводников, а внесением донорных и акцепторных примесей в различные части чистого полупроводника. Эти переходы являются основной большинства современных полупроводниковых приборов.

По своему характеру p-n переходы бывают резкие и плавные, симметричные и несимметричные. В резких p-n переходах концентрация доноров и акцепторов меняются скачкообразно на границе раздела. В симметричных p-n переходах концентрация основных носителей по обе стороны перехода равны, в несимметричных – резко различаются.

Рассмотрим резкий p-n переход (рис 1), в котором концентрация дозорной ND и акцепторной NA примесной изменяются скачком на границе раздела. Будем считать, что переход является несимметричным, например NA>ND. Обозначим концентрацию основных носителей в p-n области через pp, в n- области через nn, а концентрацию неосновных носителей соответственно через np и pn соответственно. При комнатной температуре обычно все примесные уровни ионизованы, тогда справедливо pp=NA и nn=ND.

а)

б)

Рис 1. Структура p-n перехода (а), распределение примесной (б)

В состоянии термодинамическое равновесия концентрации основных и неосновных носителей связаны законом действующих масс:

 (1)

где - концентрация собственных носителей тока.

Электроны из n-области, где их концентрация выше будут диффундировать в p-область. Диффузия дырок будет происходить в обратном направлении. За счет ухода дырок в слое p- области, примыкающем к границе раздела появится отрицательный объёмный заряд, обусловленный некомпенсированными отрицательными ионами акцепторной примеси. Аналогично диффузия электронов из n- и p- область будет сопровождаться образованием положительного заряда ионами донорной примеси в n-области. Наличие заряда в приконтактной облети вызывает появление электрического поля. Следовательного, на границе раздела имеется разность потенциалов , называемая контактной. Это поле называется дрейфовый ток неосновных носителей, направленный противоположно диффузионному току. При равновесии дифузинный и дрейфовый токи раны друг другу по величине. Физическим условием равновесия p-n перехода являются постоянство уровня Ферми для системы.

Уровнем Ферми называется энергия уровня, отделяющего занятые уровни от свободных. Среднее число электронов на уровне с энергией E определяется формулой квантого распределения Ферми-Дирака

 (2)

Следовательно уровень Ферми можно определить как уровень, вероятность заполнения которого равна 1/2.

Энергетическая диаграмма p-n перехода в условиях равновесия приведена на рис 2.

Рис 2. Энергетическая диаграммы p-n перехода в условиях равновесия.


Величина контактной разности потенциалов  на переходе будет равна

где e- заряд электрона.

Рис 3. Запирающее включение внешнего поля.

Высота потенциального барьера p-n перехода определяется отношением концентраций однотипных носителей на границах перехода и тем выше, чем сильнее легированы полупроводники. Ее максимальное значение определяется шириной запрещенной зоны полупроводникив

 (4)

Если приложить к полупроводнику внешнее поле, направление которого совпадает с полем контактного слоя, основные носители тока уходят от границы p-n перехода. В результате запирающий слой расширяется и его сопротивление возрастает. Ток в полупроводике создается за счет неосновных носителей и практически отсутствуют Такое включение называется обратным или запирающим(Рис.3).

Если внешнее поле направлено в противоположную сторону, то оно вызывает движение носителей навстречу друг другу к границе прехеода. В этой области они рекомендуют, ширина контактного слоя и его сопротивление уменьшается. В цепи возникает прямой ток, созданный основными носителями.

Рис.4. прямое включение p-n перехода

Ширина p-n перехода при приложенном внешнем поле описывается выражением

, (5)

где V>0 соответствует прямому включению, а V<0 – обратному. Отсюда следует, что при прямом включении ширина перехода уменьшается, а при обратном – увеличивается.

Таким образом, p-n переход обладает односторонней проводимостью. В прямом включении сила тока быстро возрастает с ростом напряжения носителями и резко возрастает при электрическом пробое.

На Рис.6 представлена вольтамперная характеристика (ВАХ) p-n- перехода.

Рис6 Вольтамперная характеристика p-n перехода

Когда к n-облети присоединяют положительный полюс источника, p-n переход пропускают только малый ток неосновных носителей. Лишь при очень большом напряжении сила тока резко возрастает, что обусловлено электрическим пробоем перехода(обратное направление, левая ветвь ВАХ).

При включении в цепь переменного тока p-n переходы действуют как выпрямители.

Устройство в цепь пременного тока p-n переход, называется полупроводниковым(кристаллическим) диодом. Условное обозначение полупроводникового диода(рис 7).

Рис7 Условное обозначение полупроводникового диода

Простейшие схемы выпрямления переменного тока показаны на рис8. Им соответсвует графики зависимости (силы тока через нагрузку R от времени) на рис9.


  

Рис8. Схемы простейших выпрямителей на полупроводниковых диодах

Вследствии односторонней проводимости полупроводникового диода ток в нагрузочном сопротивлении R(Рис8 а) протекает только в те полупериоды, когда p-n переход работает в пропускном направлении.

Для уменьшения пульсации в схему на рис8б включен сглаживающтй фильтр, представляющий собой конденсатор емкостью С, включен параллельно нагрузке R.

От приложенного напряжения зависит не только проводимостью но и электрическая емкость p-n перехода.

Для барьерной емкости резкого симметричного p-n перехода имеем:

Для резкого несимметричного перехода при NA>>ND

На рис 10 приведена зависимость  от напряжения (вольтфарадная характеристика) для резкого p-n перехода. При V>0 емкость резко возрастает, однако в этом случае расчеты барьерной емкости, проведенные для объединенного перехода, не совсем адекватны.


Рис 10 Вольтфарадная характеристика p-n перехода.

Рис11 Определение концентрации примесей по вольтфарадной характеристике.

По характеру зависимости C=f(V) на основе выражения10 можно судить также о распределении примесей на p-n переходе.

 (11)

Ход работы

 

Схема КД 521.

Значения напряжения и тока для прямого режима.

 N  U, B  A,mkA

 

 

 1  0.35  0.001  1.641  2.692
 2  0,40  0.014  1.628  1.276
 3  0.45  0.047  1.595  2.544
 4  0.50  0.151  1.491  2.223
 5  0.55  0.412  1.230  1.512
 6  0.60  1.370  0.272  0.074
 7  0.65  2.870  1.228  1.507
 8  0.70  8.260  6.610  43.790

 

 1.642  6.952

По полученным данным построили вольтамперную характеристику диода, используя программу EXCEL из Microsoft Office.

Построим линию тренда для прямой ветви ВАХ и получим уравнение этой линии для всех типов диодов.

; =0.124

 


 

Схема КД 226.

 N  U, B  A,mkA

 

 

 1  0.35  0.023  2.051  4.210
 2  0,40  0.090  1.984  2.936
 3  0.45  0.306  1.768  3.125
 4  0.50  1.060  1.014  1.028
 5  0.55  2.820  0.745  0.555
 6  0.60  8.150  6.075  36.905

 

   2.075  8.126

Линия тренда.

; =0.271.

=12.56;

Схема ПД.

 N  U, B  A,mkA

 

 

 1  0.20  0.392  1.202  1.444
 2  0,25  0.791  0.803  0.645
 3  0.30  1.400  0.194  0.037
 4  0.35  2.330  0.736  0.541
 5  0.40  3.660  2.066  4.268
 6  0.45  6.250  4.656  21.678
 7  0.50  9.740  8.145  66.341

 

 1.594    13.472

Линия тренда


; =0.320

Вывод: Полученные ВАХ наглядно показывают что p-n переход обладает односторонней проводимостью. В прямом включении сила тока быстро возрастает с ростом напряжения.

Для КД 521 линия тренда имеет уравнение y = 18,172x - 7,8998.

Для КД 226 линия тренда имеет уравнение y = 28,331x - 11,382

Для ПД линия тренда имеет уравнение y = 29,444x - 6,7965

Лекции по твердотельной электронике
Московский энергетический институт (технический университет) ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА Конспект лекций Москва, 2002 г. Содержание Лекция 1 5 1 ...
Таким образом в области высоких температур концентрация носителей заряда для легированных материалов стремится к концентрации носителей в собственном материале, т.е. легирование ...
Таким образом процессы, определяющие перенос зарядов в полупроводниках будут определяться четырьмя токами: дрейфовыми токами электронов и дырок, возникающими при наличии ...
Раздел: Рефераты по радиоэлектронике
Тип: реферат
Общая и неорганическая химия
Квантово-механическая модель атома. Квантовые числа. Атомные орбитали. Порядок заполнения орбиталей электронами Теория строения атома основана на ...
Здесь z - заряд иона, для которого рассчитывается коэффициент активности, I - т.н. ионная сила раствора: некоторый параметр, который одновременно учитывает молярную концентрацию и ...
В отличие от фазовых контактов металл-металл, металл-полупроводник, полупроводник-полупроводник и т. п. на границе фаз, составляющих электрохимическую систему, вид носителей тока ...
Раздел: Рефераты по химии
Тип: учебное пособие
Анализ и моделирование биполярных транзисторов
8. Работа биполярного транзистора на высоких частотах. С повышением частоты усиление, даваемое транзисторами, снижается. Имеются две главные причины ...
Однако если к одному из p-n -переходов приложить напряжение, а выводы другого p-n -перехода замкнуть между собой накоротко, то ток, протекающий через p-n -переход, к которому ...
Плоскостной транзистор состоит из кристалла полупроводника (германия, кремния, арсенида, индия, астата, и др.), имеющего три слоя различной проводимости p и n. Проводимость типа p ...
Раздел: Рефераты по коммуникации и связи
Тип: реферат
Физические основы электроники
Министерство Российской Федерации по связи и информатизации Сибирский государственный университет телекоммуникаций и информатики В.Л. Савиных ...
которое показывает, что введение в полупроводник примесей приводит к увеличению концентрации одних носителей заряда и пропорциональному уменьшению концентрации других носителей ...
Так как концентрация основных носителей в любой точке базы (дырок n-р-n транзистора) приблизительно равна концентрации примесей в этой точке, то распределение примесей Na(х ...
Раздел: Рефераты по радиоэлектронике
Тип: реферат
Разработка анализатора газов на базе газового сенсора RS 286-620
МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ (технический ...
В идеальном кристалле, в котором отсутствуют дефекты и посторонние примеси (такой полупроводник называется собственным), количество свободных электронов, электронов в зоне ...
При дальнейшем увеличении температуры, наступает момент, когда концентрация носителей заряда, возникающих при возбуждении электронов из валентной зоны в зону проводимости ...
Раздел: Рефераты по геологии
Тип: реферат