Реферат: "Длинная" арифметика

"Длинная" арифметика

Известно, что арифметические действия, выполняемые компьютером в ограниченном числе разрядов, не всегда позволяют получить точный результат. Более того, мы ограничены размером (величиной) чисел, с которыми можем работать. А если нам необходимо выполнить арифметические действия над очень большими числами, например,

30! = 265252859812191058636308480000000?

В таких случаях мы сами должны позаботиться о представлении чисел в машине и о точном выполнении арифметических операций над ними.

Числа, для представления которых в стандартных компьютерных типах данных не хватает количества двоичных разрядов, называются "длинными". Реализация арифметических операций над такими "длинными" числами получила название "длинной арифметики".

Организация работы с "длинными" числами во многом зависит от того, как мы представим в компьютере эти числа. "Длинное" число можно записать, например, с помощью массива десятичных цифр, количество элементов в таком массиве равно количеству значащих цифр в "длинном" числе. Но если мы будем реализовывать арифметические операции над этим числом, то размер массива должен быть достаточным, чтобы разместить в нем и результат, например, умножения.

Существуют и другие представления "длинных" чисел. Рассмотрим одно из них. Представим наше число

30! = 265252859812191058636308480000000

в виде:

30! = 2 * (104)8 + 6525 * (104)7 + 2859 * (104) + 8121 * (104)5 + 9105 * (104)4 + 8636 * (104)3 + 3084 * (104)2 + 8000 * (104)1 + 0000 * (104)0.

Это представление наталкивает на мысль о массиве, представленном в табл. 1.

Таблица 1

Номер элемента в массиве А 0 1 2 3 4 5 6 7 8 9
Значение 9 0 8000 3084 8636 9105 8121 2859 6525 2

Мы можем считать, что наше "длинное" число представлено в 10000-10 системе счисления (десятитысячно-десятичная система счисления, приведите аналогию с восьмерично-десятичной системой счисления), а "цифрами" числа являются четырехзначные числа.

Возникают вопросы. Что за 9 в А [0], почему число хранится "задом наперед"? Ответы очевидны, но подождем с преждевременными объяснениями. Ответы на вопросы будут ясны из текста.

Примечание. Мы работаем с положительными числами!

Первая задача. Ввести "длинное" число из файла. Решение задачи начнем с описания данных.

Const     MaxDig = 1000; {Максимальное количество цифр — четырехзначных!}

   Osn = 10000; {Основание нашей системы счисления,

                           в элементах массива храним четырехзначные числа}

Type       Tlong = Array[0..MaxDig] Of Integer;

   {Максимальное количество десятичных цифр в нашем числе}

Алгоритм ввода "длинного" числа из файла рассмотрим на конкретном примере.

Пусть в файле записано число 23851674 и основанием (Osn) является 1000 (храним по три цифры в элементе массива А). Изменение значений элементов массива А в процессе ввода (посимвольного в переменную Ch) отражено в табл. 2.

Таблица 2

А[0] А[1] А[2] А[3] Ch Примечание
3 674 851 23 - Конечное состояние
0 0 0 0 2 Начальное состояние
1 2 0 0 3 1-й шаг
1 23 0 0 8 2-й шаг
1 238 0 0 5 3-й шаг
2 385 2 0 1 4-й шаг: старшая цифра элемента А [1] перешла в пока "пустой" элемент А[2]
2 851 23 0 6 5-й шаг
2 516 238 0 7 6-й шаг
3 167 385 2 4 7-й шаг
3 674 851 23

Проанализируем таблицу (и получим ответы на поставленные выше вопросы).

1. В А[0] храним количество задействованных (ненулевых) элементов массива А — это уже очевидно.

2. При обработке каждой очередной цифры входного числа старшая цифра элемента массива с номером i становится младшей цифрой числа в элементе i+1, а вводимая цифра будет младшей цифрой числа из А[1]. В результате работы нашего алгоритма мы получили число, записанное "задом наперед".

Примечание (методическое): Можно ограничиться этим объяснением и разработку процедуры вынести на самостоятельное задание. Можно продолжить объяснение. Например, выписать фрагмент текста процедуры перенос старшей цифры из A[i] в младшую цифру А[i+1], т.е. сдвиг уже введенной части числа на одну позицию вправо:

   For i := A[0] DownTo 1 Do

   Begin

               A[i+l] := A[i+l] + (Longint(A[i]) * 10) Div Osn;

               A[i] := (LongInt(A[i]) * 10) Mod Osn;

   End;

Пусть мы вводим число 23851674 и первые 6 цифр уже разместили "задом наперед" в массиве А. В символьную переменную считали очередную цифру "длинного" числа — это "7". По нашему алгоритму эта цифра "7" должна быть размещена младшей цифрой в А[1]. Выписанный фрагмент программы "освобождает" место для этой цифры. В таблице отражены результаты работы этого фрагмента.

i А[1] А[2] А[3] ch
2 516 238 0 7
2 516 380 2
1 160 385 2

После этого остается только добавить текущую (считанную в ch) цифру "длинного" числа к А[1] и изменить значение А[0].

В конечном итоге процедура должна иметь следующий вид:

   Procedure ReadLong(Var A : Tlong);

   Var ch : char; i : Integer;

   Begin

               FillChar(A, SizeOf(A), 0) ;

               Read(ch);

               While Not(ch In ['0'..'9']) Do Read(ch);

               {пропуск не цифр во входном файле}

               While ch In ['0'..'9'] Do

               Begin

                           For i := A[0] DownTo 1 Do

                           Begin

                                       {"протаскивание" старшей цифры в числе из A[i]

                                       в младшую цифру числа из A[i+l]}

                                       A[i+l] := A[i+l] + (LongInt(A[i]) * 10) Div Osn;

                                       A[i] := (LongInt(A[i]) * 10) Mod Osn

                           End;

                           A[1] := A[l] + Ord(ch) - Ord('0');

                           {добавляем младшую цифру к числу из А[1]}

                           If A[A[0]+1] > 0 Then Inc(A[0]);

                           {изменяем длину, число задействованных элементов массива А}

                           Read(ch)

               End

   End;

Вторая задача. Вывод "длинного" числа в файл или на экран.

Казалось бы, нет проблем — выводи число за числом. Однако в силу выбранного нами представления "длинного" числа мы должны всегда помнить, что в каждом элементе массива хранится не последовательность цифр "длинного" числа, а значение числа, записанного этими цифрами. Пусть в элементах массива хранятся четырехзначные числа. Тогда "длинное" число 128400583274 будет в массиве А представлено следующим образом:

A[0] A[1] A[2] A[3]
3 3274 58 1284

При выводе "длинного" числа из массива нам необходимо вывести 0058, иначе будет потеря цифр. Итак, незначащие нули также необходимо выводить. Процедура вывода имеет вид:

   Procedure WriteLong(Const A : Tlong);

   Var      ls, s : String; i : Integer;

   Begin

               Str(Osn Div 10, Is);

               Write(A[A[0]]; {выводим старшие цифры числа}

               For i := A[0] - l DownTo 1 Do

               Begin

                           Str(A[i], s);

                           While Length(s) < Length(Is) Do s := '0' + s;

                           {дополняем незначащими нулями}

                           Write(s)

               End;

               WriteLn

   End;

Третья задача. Предварительная работа по описанию способа хранения, вводу и выводу "длинных" чисел выполнена.

У нас есть все необходимые "кирпичики", например, для написания программы сложения двух "длинных" положительных чисел. Исходные числа и результат храним в файлах. Назовем процедуру сложения SumLongTwo.

Тогда программа ввода двух "длинных" чисел и вывода результата их сложения будет иметь следующий вид:

   Var A, B, C : Tlong;

   Begin

               Assign(Input, 'Input.txt'); Reset(Input);

               ReadLong(A); ReadLong(B) ;

               Close(Input);

               SumLongTwo(A, B, C);

               Assign(Output, 'Output.txt');

               Rewrite(Output);

               WriteLong(C);

               Close(Output)

   End.

Алгоритм процедуры сложения можно объяснить на простом примере. Пусть А=870613029451, В=3475912100517461.

i A[i] B[i] C[1] C[2] C[3] C[4]
1 9451 7461 6912 1 0 0
2 1302 51 6912 1354 0 0
3 8706 9121 6912 1354 7827 1
4 0 3475 6912 1354 7827 3476

Алгоритм имитирует привычное сложение столбиком, начиная с младших разрядов. И именно для простоты реализации арифметических операций над "длинными" числами используется машинное представление "задом наперед".

Результат: С = 3476782713546912.

Ниже приведен текст процедуры сложения двух "длинных" чисел.

   Procedure SumLongTwo(A, B : Nlong; Var C : Tlong);

   Var i, k : Integer;

   Begin

               FillChar(C, SizeOf (C), 0) ;

               If A[0] > B[0] Then k := A[0] Else k : =B[0];

               For i := l To k Do

               Begin   С [i+1] := (C[i] + A[i] + B[i]) Div Osn;

                           C[i] := (C[i] + A[i] + B[i]) Mod Osn

                           {Есть ли в этих операторах ошибка?}

               End;

               If C[k+l] = 0 Then C[0] := k Else C[0] := k + l

   End;

Четвертая задача. Реализация операций сравнения для "длинных" чисел (А=В, А<В, А>В, А<=В, А>=В).

   Function Eq(A, B : TLong) : Boolean;

   Var i : Integer;

   Begin

               Eq := False;

               If A[0] <> B[0] Then Exit

               Else Begin

                           i := l;

                           While (i <= A[0]) And (A[i] = B[i]) Do Inc(i);

                           Eq := i = A[0] + l

                     End

   End;

Реализация функции А > В также прозрачна.

   Function More(A, B : Tlong) : Boolean;

   Var i : Integer;

   Begin If A[0] < B[0]   Then More := False

                                       Else     If A[0] > B[0] Then More := True

                                                   Else Begin

                                                               i := A[0];

                                                               While (i > 0) And (A[i] = B[i]) Do Dec(i);

                                                               If i = 0             Then More := False

                                                                           Else If A[i] > B[i] Then More := True

                                                               Else More:=False

                                                   End

   End;

Остальные функции реализуются через функции Eq и More.

   Function Less(A, B : Tlong) : Boolean; {A < B}

   Begin

               Less := Not(More(A, B) Or Eq(A, B))

   End;

   Function More_Eq(A, B : Tlong) : Boolean; {A >= B}

   Begin

               More_Eq := More(A, B) Or Eq(A, B)

   End;

   Function Less_Eq(A, B : Tlong) : Boolean; {A <= B}

   Begin

               Less_Eq := Not More(A, B)

   End;

Для самостоятельного решения может быть предложена следующая, более сложная, задача. Требуется разработать функцию, которая выдает 0, если А больше В, 1, если А меньше В, и 2 при равенстве чисел. Но сравнение должно быть выполнено с учетом сдвига. О чем идет речь? Поясним на примере. Пусть А равно 56784, а В — 634. При сдвиге числа В на 2 позиции влево функция должна сказать, что В больше А, без сдвига, что А больше В. Другой пример. При А равном 56700, а В — 567 и сдвиге 2 функция должна "сказать", что числа равны. Решение может иметь следующий вид:

Function More(Const А, В : Tlong; Const sdvig : Integer) : Byte;

Var i : Integer;

Begin

   If A[0] > B[0] + sdvig Then More := 0

                                       Else

                                                   If A[0] < B[0] + sdvig Then More := l

                                                   Else Begin

                                                               i := A[0];

                                                               While (i > sdvig) And

                                                                           (A[i] = B[i-sdvig]) Do Dec(i);

                                                               If i = sdvig Then Begin

                                                                                       More:=0;

                                                               {совпадение чисел с учетом сдвига}

                                                                                       For i := 1 To sdvig Do

                                                                                                   If A[i] > 0 Then Exit;

                                                                                       More := 2;

                                                               {числа равны, "хвост" числа А равен нулю}

                                                                                       End

                                                               Else More := Byte(A[i] < B[i-sdvig])

                                                   End

End;

Пятая задача. Умножение длинного числа на короткое. Под коротким понимается целое число типа LongInt.

Процедура очень походит на процедуру сложения двух длинных чисел.

   Procedure Mul(Const A : TLong; Const К : Longlnt; Var С : TLong);

   Var i : Integer;

   {результат - значение переменной С}

   Begin

               FillChar (С, SizeOf(С), 0);

               If K = 0 Then Inc(С[0]){умножение на ноль}

               Else Begin

                           For i:= l To A[0] Do

                           Begin

                                       C[i+l] := (LongInt(A[i]) * K + C[i]) Div Osn;

                                       C[i] := (LongInt(A[i])* K + C[i]) Mod Osn

                           End;

                           If C[A[0]+1] > 0 Then C[0]:= A[0] + 1

                           Else C[0]:= A[0]

                           {определяем длину результата}

                           End

   End;

Шестая задача. Вычитание двух длинных чисел с учетом сдвига

Если понятие сдвига пока не понятно, то оставьте его в покое, на самом деле вычитание с учетом сдвига потребуется при реализации операции деления. В начале выясните логику работы процедуры при нулевом сдвиге.

Введем ограничение: число, из которого вычитают, больше числа, которое вычитается. Работать с "длинными" отрицательными числами мы не умеем.

Процедура была бы похожа на процедуры сложения и умножения, если бы не одно "но" — заимствование единицы из старшего разряда вместо переноса единицы в старший разряд. Например, в обычной системе счисления мы вычитаем 9 из 11 — идет заимствование 1 из разряда десятков, а если из 10000 вычитаем 9 — процесс заимствования несколько сложнее.

   Procedure Sub (Var A : TLong; Const B : TLong; Const sp : Integer);

   Var i, j : Integer;

               {из А вычитаем В с учетом сдвига sp, результат вычитания в А}

   Begin

               For i := l To B[0] Do

               Begin Dec(A[i+sp], B[i]);

                           j: = i;{*}

                           {реализация сложного заимствования}

                           while (A[j+sp] < 0) and (j <= A[0]) Do

                           Begin{*}

                                       Inc(A[j+sp], Osn) ;

                                       Dec(A[j+sp+l]); Inc(j); {*}

                           end; {*}

                           {Реализация простого заимствования.

                           Если операторы, отмеченные *, заменить

                           на нижеприведенные операторы в фигурных скобках, то,

                           по понятным причинам, логика не будет работать

                           при всех исходных данных. Можно сознательно сделать

                           ошибку и предложить найти ее — принцип "обучение через ошибку"}

                           {If A[i+sp]<0 Then Begin Inc(A[i+sp], Osn);

                           Dec (A[i+sp+l]);End;}

               End;

               i := A[0];

               While (i > l) And (A[i] = 0) Do Dec(i);

               A[0] := i

               {корректировка длины результата операции}

   End;

Рекомендуется выполнить трассировку работы данной процедуры, например, для следующих исходных данных. Число А равно 100000001000000000000, число В — 2000073859998.

Седьмая задача. Деление двух длинных чисел, т.е. нахождение целой части частного и остатка.

Написать исходную (без уточнений) часть логики не составляет труда. Это:

   Procedure Long_Div_Long(Const А, В : TLong; Var Res, Ost : TLong);

   Begin

               FillChar(Res, SizeOf(Res), 0); Res[0] := 1;

               FillChar(Ost, SizeOf(Ost), 0); 0st[0] := 1;

               Case More(A, B, 0) Of

               0: MakeDel(A, B, Res, Ost);

               {А больше В, пока не знаем, как выполнять операцию - "выносим" в процедуру}

               1: Ost:=A; {А меньше В}

               2: Res[l] := l; {А равно В}

               End;

   End;

А дальше? Дальше начинаются проблемы. Делить столбиком нас научили в школе. Например,

      1000143123567 |73859998

     - 73859998     |----------

       ---------    |13541 (Целая часть частного)

       261543143

     - 221579994

       ----------

        399631495

      - 369299990

         ---------

         303315056

       - 295439992

         ----------

           78750647

         - 73859998

           --------

            4890649 (Остаток)

Что мы делали? На каждом этапе в уме подбирали цифру (1, 3, 5 и т.д.), такую, что произведение этой цифры на делитель дает число меньшее, но наиболее близкое к числу... Какому? Это трудно сказать словами, но из примера ясно. Зачем нам это делать в уме, пусть делает компьютер. Однако упростим пример, оставим его для тестирования окончательной логики процедуры, тем более что и числа "длинные". Пусть число А будет меньше В*10, тогда в результате (целой части деления) будет одна цифра. Например, А равно 564, а В — 63 и простая десятичная система счисления. Попробуем подобрать цифру результата, но не методом прямого перебора, а методом деления отрезка пополам. Пусть Down — верхняя граница интервала изменения подбираемой цифры, Up — нижняя граница интервала, Ost равен делимому.

Down Up С = В * ( (Down + Up) Div 2) Ost = 564
0 10 315 = 63 * ( (0 + 10) Div 2) C < Ost
5 10 441 = 63 * ( (5 + 10) Div 2) C < Ost
7 10 504 = 63 * ( (7 + 10) Div 2) C < Ost
8 10 567 = 63 * ( (8 + 10) Div 2) C > Ost
8 9 504 = 63 * ( (8 + 9) Div 2) C < Ost

Итак, результат — целая часть частного — равен (Up + Down) Div 2, остаток от деления — разность между значениями Ost и С. Нижнюю границу (Down) изменяем, если результат (С) меньше остатка, верхнюю (Up), — если больше.

Усложним пример. Пусть А равно 27856, а В — 354. Основанием системы счисления является не 10, а 10000.

Down Up С Ost = 27856
0 10000 1770000 C > Ost
0 5000 885000 C > Ost
0 2500 442500 C > Ost
0 1250 221250 C > Ost
0 625 110448 C > Ost
0 312 55224 C > Ost
0 156 27612 C < Ost
78 156 41418 C > Ost
78 117 34338 C > Ost
78 97 30798 C > Ost
78 87 29028 C > Ost
78 82 28320 C > Ost
78 80 27966 C > Ost
78 79 27612 C < Ost

Целая часть частного равна 78, остаток от деления — 27856 минус 27612, т.е. 244.

Пора приводить процедуру. Используемые "кирпичики": функция сравнения чисел (More) с учетом сдвига и функция умножения длинного числа на короткое (Mul) описаны выше.

Function FindBin(Var Ost : Tlong; Const В : TLong; Const sp : Integer) : Longint;

Var Down, Up : Word; C : TLong;

Begin

   Down := 0;Up := 0sn;

   {основание системы счисления}

   While Up - l > Down Do

   Begin

               {Есть возможность преподавателю сделать

               сознательную ошибку. Изменить условие

               цикла на Up>Down. Результат - зацикливание программы.}

               Mul(В, (Up + Down) Div 2, С);

               Case More(Ost, C, sp) Of

               0: Down := (Down + Up) Div 2;

               1: Up := (Up + Down) Div 2;

               2: Begin Up := (Up + Down) Div 2; Down := Up End;

               End;

   End;

   Mul(B, (Up + Down) Div 2, C);

   If More (Ost, C, 0) = 0 Then Sub(Ost, C, sp)

               {находим остаток от деления}

   Else begin Sub (C, Ost, sp); Ost := C end;

   FindBin := (Up + Down) Div 2;

   {целая часть частного}

End;

Осталось разобраться со сдвигом, значением переменной sp в нашем изложении. Опять вернемся к обычной системе счисления и попытаемся разделить, например, 635 на 15. Что мы делаем? Вначале делим 63 на 15 и формируем, подбираем в уме первую цифру результата. Подбирать с помощью компьютера мы научились. Подобрали — это цифра 4, и это старшая цифра результата. Изменим остаток. Если вначале он был 635, то сейчас стал 35. Вычитать с учетом сдвига мы умеем. Опять подбираем цифру. Вторую цифру результата. Это цифра 2 и остаток 5. Итак, результат (целая часть) 42, остаток от деления 5. А что изменится, если основанием будет не 10, а 10000? Логика совпадает, только в уме считать несколько труднее, но ведь у нас же есть молоток под названием компьютер — пусть он вбивает гвозди.

Procedure MakeDel(Const А, В : TLong; Var Res, Ost : TLong);

Var sp : Integer;

Begin

   Ost := A; {первоначальное значение остатка}

   sp := А[0] - В[0];

   If More(А, В, sp) = l Then Dec(sp);

   {B * Osn > A, в результате одна цифра}

   Res[0] := sp + l;

   While sp >= 0 Do

   Begin

               {находим очередную цифру результата}

               Res[sp + 1] := FindBin(Ost, B, sp);

               Dec(sp)

   End

End;

Методические рекомендации. Представленный материал излагается на четырех занятиях по известной схеме: 10-15-минутное изложение идей, а затем работа учащихся под руководством преподавателя.

1-е занятие. Ввод, вывод и сложение длинных чисел (задачи 1, 2, 3).

2-е занятие. Функции сравнения (задача 4).

3-е занятие. Умножение и вычитание длинных чисел (задачи 5, 6).

4-е занятие. Деление длинных чисел (задача 7). Безусловно, эта схема не догма. В зависимости от уровня подготовки учащихся на самостоятельное выполнение может быть вынесена значительная часть материала. Замечу только, что в силу сложившейся традиции в ряде случаев допускаются при изложении сознательные ошибки. В результате работы каждый учащийся должен иметь собственный модуль для работы с "длинными" числами.

Темы для исследований

1. Решение задач: поиск наибольшего общего делителя двух "длинных" чисел; поиск наименьшего общего кратного двух "длинных" чисел; извлечение квадратного корня из "длинного" числа и т.д.

2. "Длинные" числа могут быть отрицательными. Как изменятся описанные выше операции для этого случая?

3. Для хранения "длинных" чисел используется не массив, а стек, реализованный с помощью списка. Модифицировать модуль работы с "длинными" числами.

Список литературы

С.М. Окулов/ "Длинная" арифметика/