Лабораторная работа: Методы анализа растворов и солей

Исходное сырье и материалы

 

В эксперименте использовалась соляная кислота концентрацией 36% и плотностью 1,178 г/см3 марки «х. ч.» и серпентинит Киембаевского месторождения с технологического потока ПО «Оренбургасбест», имеющий следующий химический состав (% масс): MgO – 40,62; SiO2 – 35,20; Fe2O3 – 9,49; ППП – 13,57; Al2O3 – 0,68; СaO – 0,57; Cr2O3 – 0,21; NiO – 0,19; MnO – 0,10; CoO – 0,01.

Химический анализ выполнен лабораторией ЦНИИ Геолнеруда.

Минералогический состав представлен следующими минералами (% масс): хризотил – 60,0; лизардит – 10,0-13,0; антигорит – 2,0-3,0; немалит – 9,0; магнезит ~ 2,5; магнетит – 4-5.

В ходе данного эксперимента использовался серпентинит фракцией -0,63+0,14 мм.

При проведении экспериментов и анализов исходного сырья и продуктов использовались растворы, приготовленные из реактивов, приведенных в таблице 3.1.

Все растворы приготавливались с использованием дистиллированной воды ГОСТ 6709 – 72.

Таблица 1 – Реактивы, используемые для приготовления растворов.

Название Хим. формула ГОСТ
Сульфосалициловая кислота

C7H6O6S•2H2O

4478-68

Двунатриевая соль этилендиаминтетрауксусной кислоты, комплексона ІІІ

( Трилон Б )

C10H14O8N2Na2•2H 2O

10652-73

Парадиметиламинобензол сульфокислый Na

(Метиловый оранжевый)

C14H14N3O3SNa

10816-64
Натр едкий NaOH 4328-77
Аммиачно-буферный раствор

NH4Cl

NH4OH

3773-72

3760-79

Mетодика проведения эксперимента [1,2]

 

Перед началом опыта в реактор, который представляет собой цилиндрический стакан с эллиптическим днищем (V=450 мл), вносили рассчитанное количество необожженного серпентинита, заливали рассчитанным количеством дистиллированной воды и добавляли концентрированную кислоту небольшими порциями при постоянном перемешивании стеклянной палочкой. Затем раствор герметизировали и помещали в нагретый до 90° термостат. Далее устанавливали частоту вращения мешалки такую, чтобы суспензия находилась во взвешенном состоянии (мешалка 4-х лопастная с наклонными лопастями).

Через 2,5 часа эксперимент прекращали, суспензию фильтровали на вакуум-фильтре. Фильтрат переносили в бюкс, взвешивали и анализировали в нем содержание MgCl2, FeCl3, HCI. Осадок промывали горячей дистиллированной водой (порциями по 100 мл) до отрицательной пробы на Cl- - ионы по AgNO3  (800-1000 см3).

Промытый осадок высушивали в сушильном шкафу при температуре 110-120°С в течение 2 часов, взвешивали и анализировали на содержание в нем SiO2, влажность и  ППП.

Методика проведения анализа фильтрата [3]

Взвешивали бюкс, бюкс с фильтратом (10 мл), переливали в стакан и добавляли 20-30 мл дистиллированной воды и 1 мл HNO3 (конц) (для перевода Fe2+ в Fe3+). Нагревали до 100°С и держали 10-15 минут. По каплям добавляли NH3 (1:1), перемешивая до  появления бурых оксидов Fe(OH)3, до легкого неисчезающего запаха аммиака. Осадок отстаивался на водяной бане при 70-80°С не менее получаса.

Раствор из стакана декантировали на беззольный фильтр и фильтровали в мерную колбу. Остаток раствора вместе с осадком переносили на фильтр. Стакан и палочку несколько раз промывали горячей водой (не менее 5-6 раз). Объем раствора в мерной колбе после охлаждения доводили до метки.

Определение содержания MgO

Из мерной колбы отбирали пипеткой 10 мл раствора и помещали в коническую колбу, приливали 10 мл аммиачно-буферного раствора, 100 мл дистиллированной воды (~70°С), добавляли индикатор кислотный хром синий и титровали 0,05 М раствором трилона Б при сильном перемешивании до голубой окраски.

Расчет вели по формуле:

 

СMg2+=[V•(NK)•Э•VK/mVn•1000]•100,%                     (1)

где V – объем трилона Б, пошедшего на титрование анализируемого раствора, мл;

Э – эквивалент  MgCl2 (Э=47,6052);

N – нормальность трилона Б;

К – поправочный коэффициент трилона Б;

VК – объем мерной колбы, см3;

Vn – объем пипетки, см3;

m – масса навески фильтрата, г.

Определение содержания Fe3+

Осадок с фильтром смывали водой в стакан, в котором велось осаждение. Частицы осадка на фильтре растворяли 20 мл HCl (1:1). Раствор из стакана фильтровали и количественно переносили в мерную колбу на 250 мл и доводили водой до метки.

Из мерной колбы пипеткой отбирали 50 мл раствора и переносили в коническую колбу. Доливали 50 мл дистиллированной воды и нейтрализовали NH3 (1:1) до pH=4÷5 по универсальной индикаторной бумаге. Раствор подогревали до 40-60°С. Добавляли 5 мл HCl (1:4) и индикатор – 5 капель 10%-го раствора сульфосалициловой кислоты, и титровали 0,05 М трилоном Б до зеленовато-желтой окраски.

Расчет вели по формуле:

 

СFe3+= [V•(NK)•Э•VK/mVn•1000]•100,%                       (2)

где V – объем трилона Б, пошедшего на титрование анализируемого             раствора, мл;

Э – эквивалент FeCl3 (Э=54,0677);

N – нормальность трилона Б;

К – поправочный коэффициент трилона Б;

VК – объем мерной колбы, см3;

Vn – объем пипетки, см3;

m – масса навески фильтрата, г.

Определение кислотности

Из мерной колбы отбирали пипеткой 10 мл раствора, добавляли индикатор метил-оранжевый и титровали 0,1 М NaOH до перехода окраски из красной в оранжевую.

Расчет вели по формуле:

фильтрат выщелачивание серпентинит кремнезем аморфный

СH+=[V•(M•K)•Э•VK/m•Vn•1000]•100,%                  (3)

где где V – объем NaOH, пошедшего на титрование анализируемого раствора, мл;

Э – эквивалент  HCl (Э=36,4606);

M – молярность раствора NaOH, М;

К –коэффициент молярности NaOH;

VК – объем мерной колбы, см3;

Vn – объем пипетки, см3;

m – масса навески фильтрата, г.

Методика проведения анализа аморфного кремнезема [1]

 

Oпределение нерастворимого в HCl остатка ( SiO2)

Взвешивали навеску промытого и высушенного осадка 1 г с точностью 0,2 мг и переносили в стакан. Добавляли 150 см3 5%-ного раствора HCl и нагревали при температуре 90 - 100°С в течение 3 часов при постоянном перемешивании. Стеклянную палочку постоянно держали в стакане, который накрывали часовым стеклом.

После 3-х часов и уменьшения объема раствора до 30 – 40 см3 суспензию количественно переносили в выпарную чашку и упаривали досуха (~2 часа). После этого чашку с сухим остатком накрывали часовым  стеклом, через носик чашки по каплям вводили 15 см3 концентрированной HCl и оставляли на 10-15 минут на водяной бане, затем горячий раствор фильтровали через беззольный фильтр в стакан. Чашку обмывали на фильтр и осадок промывали до исчезновения реакции на Cl- ион (7 ступеней).

Фильтр с осадком помещали в предварительно прокаленный и взвешенный тигель и прокаливали при 800°С в течении не менее 2-х часов. После прокаливания тигель с навеской охлаждали в эксикаторе. Осажденный осадок взвешивали с точностью 0,2 мг.

Содержание нерастворимого в HCl остатка считали по формуле:

 

Х=(mост/mнав)•100,%                         (4)

где Х – содержание нерастворимого в HCl остатка, %;

mост – масса нерастворимого остатка после прокаливания, г;

mнав – масса навески, г.

ППП (потери при прокаливании)

Форфоровый тигель предварительно прокаливали до постоянной массы при температуре 900°С , не менее 2-х часов, остужали в эксикаторе и взвешивали. Взвешивали с 1 г серпентинита с точностью 0,2 мг и прокаливали при 900°С в течении 3-х часов.

Расчет вели по  формуле:

 

ППП=[(mт1)-(mт2)]/[(mт1)-mт]•100,%         (5)

где mт – масса тигеля, г;

н1 – масса серпентинита до прокаливания, г;

н2 – масса серпентинита после прокаливания, г.

Результаты экспериментов и их обсуждение

Результаты экспериментов приведены в таблицах 2-4.

Таблица 2 – Результаты анализа фильтрата, полученного путем выщелачивания серпентинита 20-ти %-ной соляной кислотой

Температура,˚С

Время выщелачивания,мин

 

Промывные воды

Содержание

Mg2+,%

Степень извлечения

Mg2+ ,%

Содержание

Fe3+,%

Степень извлечения

Fe3+,%

Остаточная кислотность,

%

Температура,

˚С

Объем, мл

90 180 55-60 1000 2,01 58 5,56
90 180 60-65 900 2,06 58 5,03
95

210

+6 дней

60-65 900 17,52 95 2,98 85 4,65
95 210 70-75 800 17,79 96 1,39 38 4,49
90 180 80-85 750 17,86 97 1,38 38 4,67

Таблица 3 – Результаты анализа полученного кремеземистого остатка

Температура,

˚С

Промывные воды

Время выщелачивания,

мин

Нерастворимый в HCl

остаток,%

Потери при прокаливании,

%

Температура,

˚С

Объем,

мл

90 55-60 1000 180 82,19 39,69
90 60-65 900 180 70,89 36,37
95 60-65 900 210+6 дней
95 70-75 800 210 83,38 39,08
90 80-85 750 180 85,41 39,05

Для подбора оптимальных условий выщелачивания, при которых из серпентинита максимально извлекаются все ценные компоненты, необходимо изучить в отдельности действие всех факторов на процесс выщелачивания и установить их оптимальные пределы.

В ходе данной работы мы исследовали влияние температуры и времени выщелачивания на степень извлечения магния и железа. Как видно из полученных данных, повышение температуры на 5°С и времени выщелачивания на 30 минут не сильно влияют на степень извлечения магния и железа, поэтому можно проводить эксперименты при следующих условиях: температура 90°С, время выщелачивания 180 минут и концентрация HCl 20%. В ходе нашего эксперимента мы достигли высоких степеней извлечения Mg2+(97%), но не добились высоких степеней извлечения Fe3+(max 85%). Возможно, это связано с тем, что брусит, содержащий Mg2+, легко растворяется в HCl, а растворимость магнетита, в котором содержится железо, уменьшается в ряду H3PO4, H2SO4, HCl, HNO3. Вследствие этого Fe3+ плохо переходит в раствор, поэтому степень извлечения его низкая.

Что касается промывки полученного кремнеземистого остатка, то повышение температуры промывных вод сокращает число операций промывки и уменьшает количество промывных вод.

Если говорить о кремнеземистом остатке, то ППП исходного серпентинита составляют 13,57%, а ППП полученного кремнезема составляют, в среднем, 39%.

ППП для серпентинита – это потеря кристаллизационной воды из кристаллической решетки. Для исследуемого аморфного кремнезема ППП – это потеря адсорбированной в порах аморфного оксида кремния (SiO2) воды. Поскольку значения ППП получились очень высокими, то можно предположить, что полученный аморфный кремнезем очень крупнопористый. Исследуя таблицу 3 можно сделать вывод, что увеличение температуры и времени выщелачивания не влияет на ППП кремнеземистого остатка.


Список литературы

1. Методы анализа рассолов и солей / Под ред. Ю.В. Морачевского, Е.М. Петровой. – М.: Химия, 1964. – 406 с.

2. Перельман В.И. Краткий справочник химика / В.И. Перельман. – М.: Химия, 1964.- 295 с.

3. Коростелев П.П. Приготовление растворов для химико-аналитических работ / П.П. Коростелев. – М.: Наука, 1964. – 398с.