Контрольная работа: Определение интегралов

Задание. Найти неопределенные интегралы. Результат проверить дифференцированием.

а)

Используемый прием интегрирования называется подведением под знак дифференциала. Проверим результат дифференцированием.

б)

В этом интеграле также используется подведение под знак дифференциала

Проверим результат дифференцированием.


в)

Для решения этого интеграла воспользуемся формулой интегрирования "по частям". Приведем формулу интегрирования по частям:

В этом интеграле распишем составляющие следующим образом:

Продифференцируем u и проинтегрируем dv чтобы мы могли применить формулу интегрирования по частям:


Подинтегральное выражение есть неправильная рациональная дробь. Необходимо привести ее к сумме правильных рациональных дробей, выполнив деление углом числитель на знаменатель.

Вернемся к исходному интегралу:

Проверим результат дифференцированием:

г)

интеграл дифференцирование уравнение парабола

Подинтегральное выражение является неправильной рациональной дробью. Необходимо преобразовать ее в сумму правильных рациональных дробей, выполнив деление углом числитель на знаменатель:

Подинтегральное выражение представляет собой правильную рациональную дробь. Чтобы проинтегрировать её необходимо её представить в виде суммы простейших дробей. Найдем корни знаменателя

по теореме Виета

Разложим правильную рациональную дробь в сумму простейших методом неопределенных коэффициентов:

Приравнивая коэффициенты при одинаковых степенях х, составим систему линейных алгебраических уравнений для определения неизвестных коэффициентов А и В:

Решая СЛАУ находим значения коэффициентов:

Возвратимся к исходному интегралу:

Результат проверим дифференцированием:

Задание. Вычислить по формуле Ньютона-Лейбница определенный интеграл.


Перейдем к замене переменных в определенном интеграле:

Задание. Вычислить площадь фигуры, ограниченной параболой  и прямой . Сделать чертеж.

Решение. Площадь области S, ограниченной снизу функцией g(x), сверху- функцией f(x), слева - вертикальной прямой , справа - вертикальной прямой равна  равна определенному интегралу:

Так как мы пока не знаем, какая же из функций является большей на отрезке , построим чертеж. Точки ,  являются абсциссами точек пересечения графиков этих двух функций.


Как видно из построения парабола лежит выше прямой на отрезке, поэтому:

Абсциссы точек пересечения суть соответственно -6 и -1. Эти значения мы также можем получить решив в системе уравнения двух кривых

по теореме Виета имеем: , . Теперь осталось только применить формулу вычисления площади криволинейной области:


-6

 

-1

 

Найти общее решение дифференциального уравнения  и частное решение, удовлетворяющее начальному условию  при

Решение: имеем линейное уравнение первого порядка. будем искать решение уравнения в виде произведения двух функций от х:  

Запишем исходное выражение в виде:

Выберем функцию  такой чтобы выражение в скобках равнялось нулю:


Разделяя переменные в этом дифференциальном уравнении относительно функции v, находим:

Так как выражение в скобках подобрано так, чтобы оно равнялось нулю, подставим найденное значение  в уравнение  для определения u.

Таким образом находим общее решение системы


Подберем переменную С так чтобы выполнились начальные условия , что будет являться частным решением дифференциального уравнения:

Полученное частное решение дифференциального уравнения, соответствующее поставленным начальным условиям.

Задание. Найти общее решение дифференциального уравнения  и частное решение, удовлетворяющее начальным условиям ,  при . (,)

Решение: Пусть имеем неоднородное линейное уравнение второго порядка:

Структура общего решения такого уравнения определяется следующей теоремой:

Теорема: Общее решение неоднородного уравнения представляется как сумма какого-нибудь частного решения этого уравнения y* и общего уравнения y соответствующего однородного уравнения:

Чтобы найти общее решение соответствующего однородного уравнения (то есть такого, в котором правая часть равна нулю) необходимо найти корни характеристического уравнения и по ним определить вид решения.

Характеристическое уравнение в нашем случае есть:

имеет действительные и различные корни: , .

Общий интеграл есть:

Правая часть линейного уравнения второго порядка имеет вид:  , где  - многочлен 0-й степени, =2 (не является корнем характеристического многочлена).

поэтому частное решение следует искать в виде:

где  - постоянный коэффициент, подлежащий определению. Подставляя y* в заданное уравнение, будем иметь:


Имеем решение . Итак, частное решение нашли в виде:

Таким образом, общий интеграл данного уравнения имеет вид:

Для определения коэффициентов С1 и С2 используем начальные условия:

При х=0 функция равна 2

При х=0 первая производная функции равна -1:

Составим систему из этих двух уравнений и решим её относительно неизвестных С1 и С2

                                

Таким образом, частное решение данного дифференциального уравнения запишется в виде:


Большая коллекция шпор для МАТАНа (1 семестр 1 курс)
1. Векторы. Действия над векторами. Вектором наз. упорядоченная совокупность чисел Х={X1,X2,...Xn} вектор дан в n-мерном пространстве. Т(X1,X2,X3). n ...
Рациональная дробь наз. правильной если степень числителя меньше степени знаменателя, т.е. m
5. Дифференцирование неявных функций Пусть уравнение определяет как неявную функцию от х. а) продифференцируем по х обе части уравнения , получим уравнение первой степени ...
Раздел: Рефераты по математике
Тип: шпаргалка
Содержание и значение математической символики
Курсовая работа Выполнила студентка факультета математики 4 курс 4 группа Клочанова Ольга Михайловна Российский государственный педагогический ...
Кроме формул, представляющих собой обращение упомянутых формул дифференцирования, Лейбниц дал две работы об интегрировании рациональных дробей (1701 и 1703 гг.)
Существенно то, что Лейбниц отчетливо определил взаимоотношение интегрирования дифференциальных уравнений и интегрирования функций (первое следует считать выполненным, если оно ...
Раздел: Рефераты по математике
Тип: дипломная работа
Управление сложными системами
Лекция №1. 11.02.2003 Раздел 1. Основные понятия теории сложности 1.1. Сложность Сложность - свойство современных систем управления. Различают ...
Применяя к уравнению (X) пункта № 4.1.1.2.2 преобразование Лапласа при нулевых начальных условиях, с учётом свойств линейности и дифференцирования получим:
Из теории дифференциальных уравнений известно, что решение уравнения (5) при известных начальных условиях может быть получено в следующем виде:
Раздел: Рефераты по информатике, программированию
Тип: учебное пособие
Вклад Л.Эйлера в развитие математического анализа
План Введение 1 Понятие математического анализа. Исторический очерк 2 Вклад Л.Эйлера в развитие математического анализа 3 Дальнейшее развитие ...
При этом элементы функционального анализа и теории интеграла Лебега даются факультативно, а ТФКП, вариационное исчисление, теория дифференциальных уравнений читаются отдельными ...
Он продвинул его обоснование, существенно развил интегральное исчисление, методы интегрирования обыкновенных дифференциальных уравнений и уравнений в частных производных.
Раздел: Рефераты по математике
Тип: реферат
Методы решения уравнений, содержащих параметр
Выпускная квалификационная работа Выполнил тудент V курса математического факультета Кузнецов Е.М. Вятский государственный гуманитарный университет ...
Имеются задачи (№№971, 972) на применение обратного утверждения теоремы Виета, говорящее о том, что сумма и произведение корней уравнения равны коэффициентам этого уравнения.
Процесс решения дробно-рациональных уравнений протекает по обычной схеме: данное уравнение заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и ...
Раздел: Рефераты по математике
Тип: курсовая работа