Контрольная работа: Построение графиков функций. Решение нелинейных уравнений и систем нелинейных уравнений

Введение

Тема контрольной работы «Построение графиков функций. Решение нелинейных уравнений и систем нелинейных уравнений » по дисциплине «Информатика».

Цель и задачи работы:

1. Научиться создавать и применять ранжированные переменные.

2. Научиться строить графики в декартовой системе.

3. Научиться решению нелинейных уравнений и систем нелинейных уравнений с помощью решающего блока.

4. Решение системы линейных уравнений матричным способом.

При решении многих технических задач математические модели решения представляют собой нелинейные уравнения, системы нелинейных уравнений, системы линейных уравнений.

Уравнения и системы уравнений, возникающие в практических задачах, обычно можно решить только численно. Методы численного решения реализованы и в программе MathCad.

Для выполнения практической части:

Загрузить программу MathCAD с помощью ярлыка.

Сохранить файл в собственной папке под именем ….


Задание №1

Создать ранжированные переменные и вывести таблицы их значений

1. Создать ранжированную переменную z, которая имеет:

начальное значение                       1

конечное значение                          1.5

шаг изменения переменной          0.1

и вывести таблицу значений переменной z

2. Создать ранжированную переменную y, которая имеет:

начальное значение                         2

конечное значение                          7

шаг изменения переменной             1

и вывести таблицу значений переменной y

3. Создать ранжированную переменную t, которая имеет:

начальное значение                         a

конечное значение                          b

шаг изменения переменной             h

и вывести таблицу значений переменной t

 

Для создания ранжированных переменных используют Палитру

Последовательность действий:

1.   (ввести начальное значение)

2.  (запятая)

3.  ввести следующее значение (1.1)

4.  нажимают кнопку

5.  1.5 (ввести конечное значение

Если шаг изменения =1, то не выполняют пункты 2. и 3.

Для вывода таблицы значений, достаточно ввести имя переменной и знак .

 


Выполнение Задания №1

1.1 1.2 1.3

Задание ранжированной переменной в виде  удобно тем, что изменяя значения a, h, b автоматически изменяется и таблица вывода ранжированной переменной

Задание №2

 

Построить график функции

 

f(x)=sin(x)+ex-2    на диапазоне [-5; 2]

 

Выполнение задания №2

Последовательность действий:

1. Создать ранжированную переменную x

2. Создать функцию пользователя                 


3. Для построения графика использовать Палитру Graph

и кнопку

4. Ввести в место ввода по оси X имя независимого аргумента – x

5. Ввести в место ввода по оси Y   – f(x)

6. Отвести от графика указатель мыши и щелкнуть левой кнопкой мыши. График будет построен

Рис. 1.1

Для форматирования графика, дважды щелкнуть в области графика.

Появится диалоговое окно



В этом окне

1.на Вкладке Ось X-Y установитьпереключатель Пересечение

2.на Вкладке Трассировки можно установить цвет и толщину линии

Если щелкнуть по графику (появятся маркеры вокруг графика), то методом протягивания в нужном направлении можно изменить размеры графика.

Так выглядит график после форматирования

Рис. 1.2


Теоретическая часть

Блок уравнений и неравенств, требующих решения, записывается после ключевого слова Given (дано). При записи уравнений используется знак логического равенства =, кнопка находится в Палитре Boolean.

Заканчивается блок решения вызовом функции Find (найти). В качестве аргументов этой функции – искомая величина. Если их несколько (при решении систем уравнений, то искомые неизвестные должны быть перечислены через запятую).

Всякое уравнение с одним неизвестным может быть записано в виде, f(x)=0,

где f(x) – нелинейная функция. Решение таких уравнений заключается в нахождении корней, т.е. тех значений неизвестного x, которые обращают уравнение в тождество. Точное решение нелинейного уравнения далеко не всегда возможно. На практике часто нет необходимости в точном решении уравнения. Достаточно найти корни уравнения с заданной степенью точности.

Процесс нахождения приближенных корней уравнения состоит из двух этапов:

1 этап. Отделение корней, т.е. разбиения области определения функции f(x), на отрезки, в каждом из которых содержится только один корень уравнения.

2 этап. Уточнение приближенных корней уравнения, т.е. доведение их до заданной степени точности.

 

 


Практическая часть

 

Задание №1

Постановка задачи:

Найти корень уравнения x3-x2=2 с точностью Е=0,00001

Приведем заданное уравнение к виду f(x)=0

x3-x2-2 =0    f(x)= x3-x2-2

Выполнение задания № 1

1 этап – отделение корней

 

Создать функция пользователя

Создать ранжированную переменную x

Построить график f(x)

Из графика видно, что приближенное значение x=1.5 (то значение x, при котором функция пересекает ось x)

2 этап – уточнение приближенного значения корня

 

Специальный вычислительный блок имеет следующую структуру

Задают начальное значение x (из графика – приближенное)

TOL – Системная переменная, которой присваивается значение требуемой точности 0.00001

Так как требуемая точность вычисления 0.00001, то дважды щелкнув по результату, необходимо отформатировать результат (задать нужное количество десятичных знаков).

Given

Given (дано) – ключевое слово, открывающее блок решения

x3-x2 –2 = 0

Так записывается уравнение. При записи уравнений в решающем блоке используют знак логического равенства =, которому соответствует кнопка  Палитры

Вызвать функции Find, которая в качестве аргументов должна содержать искомую величины (если их несколько, то они перечисляются через запятую)

Ответ: x=1.69562

Проверка:

Найденное значение корня подставим в заданное уравнение.

Если x найден верно, то f(x)=0 (так как мы ищем приближенное значение, то в правой части может быть не нуль, а очень малое значение < Е (требуемой точности)

Уточнение корня в программе MathCad


 

Задание №2

 

Постановка задачи:

Решить систему уравнений  с точностью Е=0.00001

 

Выполнение задания №2

3. Построить графики функций y1 (x) и y2 (x)


4. Находим из графика точку пересечения кривых

 

Проверка:

 


Литература

1.  Симонович С. Информатика: базовый курс. – СПб.: Питер, 1999, 640 с.

2.  Дьяконов В. MATHCAD 8/2000: специальный справочник – СПБ: Питер, 2001. – 592 с.