Курсовая работа: Расчет трансформатора
Введение
Известно, что наибольшее распространение в трансформатостроении получили силовые трансформаторы со стержневыми магнитопроводами, как наиболее простые и удобные в конструктивном отношении по сравнению с трансформаторами броневого типа. Трансформаторы броневого типа в России в основном используются в маломощных радиотехнических установках. Трансформатор со стержневым магнитопроводом обладает лучшими условиями охлаждения обмоток и сердечника, доступностью осмотра обмоток при ревизии трансформатора, простотой сборки и ремонта сердечника и т.д. [1].
В курсовой работе в краткой форме произведен расчет силового трансформатора без подробного рассмотрения ряда второстепенных деталей и узлов имеющих значение при заводском проектировании. Однако это дает возможность овладеть основами расчета трансформаторов.
Исходные данные для проектирования
Номинальная мощность трансформатора………. |
S = 400 кВА |
Число фаз……………………………… |
m =3 |
Частота сети……………………………. |
f=50 Гц |
Режим работы трансформатора……………… | продолжительный |
Номинальное высшее линейное напряжение……. |
UВН = 10000 В |
Номинальное низшее линейное напряжение……. |
UНН = 515 В |
Схема и группа соединения обмоток…………. | Y/Y – 12 |
Способ охлаждения трансформатора…………. | естественное масляное |
Напряжение короткого замыкания……………. |
uк = 4,5% |
Потери короткого замыкания………………. |
Рк = 3000 Вт |
Потери холостого хода……………………. |
Ро = 1500 Вт |
Ток холостого хода………………………. Материал обмоток………………………. |
io = 4,9% алюминий |
Обозначим, для краткости, первичную обмотку трансформатора –1, а вторичную – 2.
1 Основные электрические величины
Номинальные фазные напряжения (при этом принимаем во внимание, что при схеме звезда):
В.
Номинальные токи. При схеме «звезда» Iф = Iл
т.о. I1 = I1ф = 448,4 А; I2 = I2ф = 23,1 А
2. Определение основных размеров трансформатора
Данные для расчета:
- металл провода обмоток – алюминий;
- марка стали сердечника – 3411 (Э310);
- толщина листов стали – 0,35 мм;
- удельные потери в стали р10= 1,75 Вт/кг;
- магнитная индукция в стержнях Вс=1,6 Тл;
- средняя плотность тока в обмотках j = 2 А/мм2;
Отношение веса стали к весу металла обмоток
,
где pм – удельные потери в металле обмоток для алюминия pм=12,75 Вт/кг.
ЭДС на один виток
В/виток.
где С0 – коэффициент определяемый формой катушек, материалом. При трехслойной конструкции, алюминий, круглая форма катушек
С0 = 0,14…0,21 [4]. Примем С0 =0,17.
Число витков в обмотке 1
виток;
Число витков в обмотке 2
витков.
Уточненное значение ЭДС на виток
В/виток
Площадь поперечного сечения стали стержня сердечника
см2;
Рисунок 2.1 Ступенчатая форма поперечного сечения стержня трансформатора
Число ступеней стержня сердечника n=6; [4]
Число каналов в сердечнике – сердечник без каналов;
Коэффициент заполнения площади описанного круга площадью ступенчатой фигуры kкр=0,935 [4];
Изоляция стали – бумага;
Коэффициент заполнения ступенчатой фигуры сталью fс=0,92 [4];
Диаметр круга, описанного вокруг стержня сердечника
см.
Номинальная мощность обмотки 1 на стержень сердечника
кВА;
где с – число фаз.
Номинальное напряжение обмотки 1 на стержень сердечника
В;
Номинальный ток обмотки 1 на стержень сердечника
А;
Число витков обмотки 1 на стержень сердечника
виток;
Предварительная площадь поперечного сечения провода обмотки 1
мм2;
Тип обмотки 1 – цилиндрическая двухслойная из провода прямоугольного сечения [2];
Номинальная полная мощность обмотки 2 на стержень сердечника
кВА;
Номинальное напряжение обмотки 2 на стержень
В;
Номинальный ток обмотки 2
А;
Число витков обмотки 2 на стержень
витков;
Предварительная площадь поперечного сечения провода обмотки 2
мм2;
Тип обмотки 2 – многослойная цилиндрическая из провода круглого сечения [2].
Испытательное напряжение обмотки 1
кВ; [4]
Испытательное напряжение обмотки 2
кВ; [4]
Изоляционный цилиндр между обмоткой 1 и сердечником δцо не предусматривается;
Полное расстояние между обмоткой 1 и стержнем сердечника
δо=0,9 см; [4]
Расстояние между обмоткой и ярмом
lо=3 см;
Толщина изоляционного цилиндра в промежутке между обмотками 1 и 2
δц12=0,3 см;
Толщина каждого из двух вертикальных каналов
ак12=0,5 см;
Полное расстояние между обмотками 1 и 2
δ12=2.ак12+δц12=2.0,5+0,3=1,3 см;
Предварительная радиальная толщина обмотки 1 из алюминиевого провода при мощности одного стержня от 50 до 500 кВт δ1= 3,6…4,4, принимаем δ1=4 см [4].
Предварительная радиальная толщина обмотки 2 при предыдущих мощностях δ2= 2,5…3, принимаем δ2=2,7 см [4].
Предварительное приведенное расстояние между обмотками
см.
Средний диаметр обмотки 1
см;
Средний диаметр обмотки 2
см;
Средняя длина витка обмоток
см.
Активная составляющая напряжения короткого замыкания
;
Индуктивная составляющая напряжения короткого замыкания
;
Высота обмоток по оси стержня сердечника
см;
где Кр= 0,95…0,97 – коэффициент учитывающий переход от средней длины магнитных линий потоков рассеяния к действительной высоте обмоток по оси стержня [4].
Рисунок 2.3 Предварительный эскиз расположения обмоток в окне трансформатора
Высота окна сердечника
см.
Отношение высоты окна сердечника к диаметру стержня сердечника
,
При обмотках из алюминиевого провода в трансформаторах с масляным охлаждением lc/D0=4,2…5,2 [4]
3. Расчет обмоток трансформатора
Уточнение средней плотности тока в обмотках
А/мм2.
где kм – коэффициент учитывающий потери в отводах и потери от потоков рассеяния в баке трансформатора. kм =0.96…0,92 [4].
γм – удельный вес алюминия, γм=2,7 кг/см3.
Предварительная удельная тепловая загрузка поверхности обмотки 1
q – количество теплоты переданное маслом охлаждающей поверхности, q1≤ 700…900 – при цилиндрической, винтовой обмотке из алюминия, режим продолжительный. Принимаем q1=700 Вт/м2;
Предварительная удельная тепловая загрузка поверхности обмотки 2
q2≤500…700 – при многослойной обмотке из алюминия, с проводом круглого сечения. Принимаем q1=500 Вт/м2 [4].
4. Расчет цилиндрической обмотки 1 из провода прямоугольного сечения
Предварительная плотность тока в обмотке 1
А/мм2;
Площадь поперечного сечения провода обмотки 1
мм2.
Цилиндрическая обмотка 1 из провода прямоугольного сечения может иметь один или два слоя, принимаем число слоев nв1=2.
Число витков в слое
витков;
Предварительная высота витка вдоль стержня сердечника
см;
Число цилиндрических поверхностей охлаждения обмотки
где kп≈0,75 – коэффициент частичного закрытия поверхности обмотки рейками, образующие вертикальные каналы, принимаем [5].
Окончательно по табл. 5–3 [4] принимаются следующие размеры провода
мм
где а1 – большая сторона сечения провода;
b1 – меньшая сторона сечения провода;
δu – нормальная изоляция провода, для провода марки ПББО δu = 0,45 [4];
– число параллельных проводов.
Площадь поперечного сечения провода
=мм2;
где Sм1к – площадь поперечного сечения провода обмотки 1
Плотность тока в обмотке 1
А/мм2;
Толщина витка вдоль стержня сердечника
см;
где b1мк – осевая толщина m – ного изолированного параллельного провода.
Удельная тепловая загрузка поверхности обмотки 1
Вт/м2;
Радиальная толщина витка
см.
au1 = a1 + δu
Высота обмотки 1 вдоль стержня сердечника
см;
Радиальная толщина вертикального канала между двумя слоями обмотки 1. Для масляных трансформаторов.
ак=0,6 см;
Радиальная толщина обмотки 1
см.
Средний диаметр обмотки 1
см;
Средняя длина витка обмотки 1
см;
Вес металла обмотки 1
кг,
где г/cм3 – удельный вес обмоточного провода [6].
Потери в обмотке 1 без учета добавочных потерь
Вт;
Сумма толщин всех проводов без изоляции обмотки 1 вдоль стержня
см;
Полное число проводов обмотки 1 вдоль радиуса
;
Коэффициент увеличения потерь в обмотке 1 от поверхностного эффекта
где ρ – удельное сопротивление алюминия при 75 ºC, ρ =0,034 Ом·м;
;
Потери в обмотке 1 с учетом добавочных потерь
Вт.
5. Расчет многослойной цилиндрической обмотки 2 из провода круглого сечения
Плотность тока в обмотке 2
А/мм2;
Площадь поперечного сечения провода обмотки 2
мм2.
Число параллельных проводов в обмотке 2
;
Диаметр голого и изолированного провода (таблица 5–1) [4]
мм;
Марка провода – АПБ;
Площадь поперечного сечения провода обмотки 2
мм2;
где – площадь поперечного сечения изолированного провода
Плотность тока в обмотке 2
А/мм2;
Расчетный диаметр изолированного провода обмотки 2 с учетом неплотности намотки
см;
Толщина витка вдоль стержня сердечника
см;
Число витков в одном слое обмотки
Число слоев обмотки 2
,
что нежелательно; принимаем ;
Окончательное число витков в слое
,
т.е. 10 слоев по 77 витков и 1 слой из 28 витков, т.е. всего витков.
Рабочее напряжение между двумя слоями
В;
Толщина междуслойной изоляции
δмсл=0,036 см;
Выступ междуслойной изоляции на торцах обмотки 2 равен 1,6 см [4];
Число цилиндрических поверхностей охлаждения обмотки 2 на стержень сердечника
;
Принимаем (округляется до целого значения в пределах от 1 до 4)
Удельная тепловая загрузка поверхности обмотки 2
Вт/м2.
Число слоев и витков в слое во внутренней катушке – 1 слой по 77 витков в слое;
Число слоев и витков в слое в наружной катушке – 1 слой по 77 витков и 1 слой из 28 витков;
Радиальная ширина вертикального канала между двумя концентрическими катушками обмотки 2
ак2=0,7 см;
Радиальная толщина обмотки 2
см;
Высота обмотки 2
см.
Уточнение приведенного расстояния
см,
где – приведенное расстояние между обмотками, см;
– высота обмоток, см.
Уточнение действительного расстояния между обмотками 1 и 2
см;
Средний диаметр обмотки 2
см;
Средняя длина витка обмотки 2
см;
Вес металла обмотки 2
кг.
Потери в обмотке 2 без учета добавочных потерь
Вт;
Коэффициент увеличения потерь в обмотке 2 от поверхностного эффекта
Потери в обмотке 2 с учетом добавочных потерь
Вт.
6. Параметры и относительное изменение напряжения трансформатора
Потери короткого замыкания
Вт,
т.е. на 0,3% больше заданного, что допустимо [4].
Активная составляющая напряжения короткого замыкания
%;
Приведенное расстояние между обмотками
см;
Коэффициент, учитывающий переход от средней линии магнитных силовых линий потоков рассеяния к высоте обмоток
;
Средняя длина витка обмоток 1 и 2
см;
Индуктивная составляющая напряжения короткого замыкания
%;
Напряжение короткого замыкания
%,
т.е. на 3,5% больше задания, что допустимо.
Активное сопротивление обмотки 1
Ом;
Активное сопротивление обмотки 2
Ом;
Активная составляющая сопротивления короткого замыкания, приведенная к числу витков обмотки 1
Ом;
Индуктивная составляющая сопротивления короткого замыкания, приведенная к числу витков обмотки 1
Ом;
Процентное изменение напряжения при номинальной нагрузке (β= 1) и
cos φ = 0,8
%.
7. Механические силы в обмотках при коротком замыкании
Установившийся ток к. з. в обмотках
А;
А;
Максимальное значение тока к. з. в обмотке 2
А;
Суммарная радиальная сила при к.з.
кг;
Разрывающее напряжение в проводе обмотки 2
кг/см2,
что допустимо. Допустимое напряжение для алюминия σ ≤600…700 кг/см2
8. Расчет магнитной системы трансформатора
Принимаем: запрессовка стержней сердечника выполнена клиньями между сердечником и обмоткой 1, сердечник без каналов [4];
Ширина пакетов стержней сердечника:
см;
см;
см;
см;
см;
см;
Толщина пакетов стержня сердечника (в сердечнике нет каналов):
см;
см;
см;
см;
см;
см;
Площадь поперечного сечения ступенчатой фигуры стержня сердечника
см2;
Площадь поперечного сечения стали стержня сердечника
см2;
Магнитная индукция в стали стержня сердечника
Тл.
Коэффициент увеличения площади поперечного сечения стали ярма
kя=1,05; [4]
Поперечное сечение стали ярма
см2;
Магнитная индукция в стали ярма
Тл;
Высота ярма сердечника
;
см;
Толщина ярма перпендикулярно листам стали
см.
Наружный диаметр обмотки 2
см;
Расстояние между осями стержней сердечника
см;
Длина ярма сердечника
см;
Длина стержней сердечника
см;
Вес стали стержней сердечника
кг;
Вес стали ярем сердечника
кг;
Полный вес стали сердечника
кг.
Вес металла обмоток
кг;
Отношение веса стали к весу металла обмоток
.
Потери в стали сердечника (потери холостого хода) [5]
где
Gу= Gс.у.+ Gя.у.= γSс•2b1+ γSя•2b1
Gу =7,6•216•2•17,19•10-3+7,6•226•2•17,19•10-3=56,4+59,1=115,5 кг;
Ку=1,5, [5]
P10=1,75 Вт/кг; P10я=1,57 Вт/кг; [4]
т.о.
Вт;
т.е. на 4% больше заданного, что допустимо.
Сборка сердечника – впереплет.
Число эквивалентных магнитных зазоров в сердечнике крайней фазы с магнитной индукцией Вс
;
Число эквивалентных магнитных зазоров в сердечнике крайней фазы с магнитной индукцией Вя
;
Амплитуда намагничивающего тока крайней фазы обмотки 1
где awc – удельные магнитодвижущие силы (МДС) в стержне; [4]
awя – удельные МДС в ярме; [4]
δэ – длина эквивалентного воздушного зазора в стержне и ярме при сборке сердечника в переплет, δэ = 0,005 см [4].
А;
Число зазоров в сердечнике средней фазы с магнитной индукцией Вс
;
Число зазоров в сердечнике средней фазы с магнитной индукцией Вя
;
Амплитуда намагничивающего тока средней фазы обмотки 1
А;
Среднее значение амплитуды намагничивающего тока для трех фаз
А.
Реактивная составляющая фазного тока холостого хода обмотки 1
А.
где kA1 – коэффициент амплитуды, зависящий от магнитной индукции и вида стали.
Реактивная составляющая фазного тока холостого хода по упрощенному методу расчета
где σс – коэффициент учитывающий соединение обмоток на стороне питания, σс=1 если обмотки соединены в треугольник или звезду с нулевым проводом, σс=1…0,92 если на стороне питания обмотки соединены в звезду без нулевого провода;
ррс – удельная реактивная мощность намагничивания листовой электротехнической стали, ррс = 22…44;
рδс – удельная реактивная мощность намагничивания мест сопряжения стальных листов рδс = 1,8…2,7 при В=Вс;
рδя – удельная реактивная мощность намагничивания мест сопряжения ярма
рδя = 1,7…2,2 при В=Вя.
А;
Реактивная составляющая линейного тока холостого хода по упрощенному методу расчета
А.
Активная составляющая фазного тока холостого кода обмотки 1
А;
Фазный ток холостого хода
А;
Линейный ток холостого хода обмотки 1 , т. к. соединение «звезда».
Линейный ток холостого хода в процентах от номинального тока
%,
т.е. на 2% больше заданной величины, что допустимо.
9. Коэффициент полезного действия
Коэффициент полезного действия при номинальной нагрузке и cos φ = 0,8
%;
Кратность тока нагрузки, при которой коэффициент полезного действия максимальный
;
Максимальное значение КПД при cos φ2 = 0,8
%.
Заключение
Проектирование трансформаторов включает в себя расчет и их конструирование. В данной курсовой работе рассматривался только расчет силового трехфазного трансформатора с масляным охлаждением мощностью 400 кВА напряжением 10/0,4 кВ.
На основе задания и исходных данных выбираем трехфазный масляный трансформатор, соответствующий требованиям ГОСТ 11677, ГОСТ 11920, ГОСТ-15150, марки ТМГ-400/10–0,4 – У1 – трансформатор трехфазный силовой масляный герметичного исполнения (без маслорасширителя) общего назначения мощностью 400 кВ-А с естественным масляным охлаждением, с напряжением на высокой стороне 10 кВ, на низкой – 0,4 кВ, климатического исполнения для умеренного климата.
Библиографический список
1. Беспалов, В.Я. Электрические машины [Текст]: учебник / В.Я. Беспалов [и др.]. – М.: Академия, 2006. – 313 с.
2. Ванурин, В.Н. Электрические машины [Текст]: учебник / В.Н. Ванурин. – М.: Энергия, 2006. – 380 с.
3. Епифанов, А.П. Электрические машины [Текст]: учебник / А.П. Епифанов. – М.: Лань, 2006. – 263 с.
4. Тихомиров, П.М. Расчет трансформаторов [Текст]: учебник / П.М. Тихомиров. – М.: Энергия, 1976. – 544 с.
5. Дымков, А.М. Расчет и конструирование трансформаторов [Текст]: учебник / А.М. Дымков. – М.: Высш. шк., 1971. – 264 с.
6. Сергеев, П.С. Проектирование электрических машин [Текст]: учебник / П.С. Сергеев, Н.В. Виноградов, Ф.А. Горяинов. – М.: Энергия, 1969. – 632 с.
7. Ермолин, Н.П. Расчет силовых трансформаторов [Текст]: пособие по курсовому проектированию / Н.П. Ермолин, Г.Г. Швец. – Л.: ЛЭТИ, 1964. – 167 с.
Проект электрокотельной ИГТУ | |
Содержание 1. Введение 1.1 Энергетика Иркутской области, перспективы развития 2. Общая часть 2.1 Краткая характеристика объекта и источников ... Они представляют собой нагрузки на 1 м длины провода или отнесённые к 1 мм2 его поперечного сечения. Схема защиты состоит из полупроводникового реле типа РТЗ-50 подключенного к вторичной обмотке кабельного трансформатора тока, сердечник которого охватывает трёхфазный кабель ... |
Раздел: Рефераты по физике Тип: дипломная работа |
Расчет трансформатора ТМ1000/35 | |
Федеральное агентство по образованию РФ ГОУ ВПО УГТУ - УПИ кафедра "Электрические машины" Курсовая работа Расчёт трансформатора ТМ 1000/35 Каменск ... Сердечники трансформаторов состоят из стержней, на которых размещаются обмотки, и ярм, которые служат для проведения потока между стержнями. Вследствие изменения потока, в контурах стали сердечника индуктируется ЭДС, вызывающая вихревые токи, которые стремятся замкнуться по контуру стали, расположенному в поперечном ... |
Раздел: Рефераты по физике Тип: курсовая работа |
Усилитель мощности миллиметрового диапазона длин волн | |
Министерство образования Республики Беларусь Учреждение образования Белорусский Государственный Университет Информатики и Радиоэлектроники Кафедра ... 6. Площадь поперечного сечения провода обмотки определяется допустимой плотностью тока : q1 - сечение провода первой обмотки из п. 6.1 (два провода по 0,5 мм2); |
Раздел: Рефераты по коммуникации и связи Тип: дипломная работа |
История и развитие сварочного производства | |
История и развитие сварочного производства (конспект лекций) Содержание Предисловие Глава 1. Из истории сварки Глава 2. Развитие электрической сварки ... Первичная обмотка понижающего трансформатора (рис, 2.13, а) состоит из большого числа витков обычного обмоточного провода. Поэтому удельная потребляемая мощность, соотнесенная к единице сечения при сварке трением, составляет 8 - 20 Вт/мм2, а при контактной сварке того же сечения 100-250 Вт/мм2; |
Раздел: Промышленность, производство Тип: учебное пособие |
Импульсный трансформатор | |
Министерство образования и науки Украины РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ПО КУРСОВОМУ ПРОЕКТИРОВАНИЮ на тему: "ИМПУЛЬСНЫЙ ТРАНСФОРМАТОР" по дисциплине ... 2.4 Определение поперечного сечения стержня и средней длины магнитопровода сердечника трансформатора g1= 0.724 (мм2), g2= 0,22 (мм2) - поперечные сечения проводов первичной и вторичной обмоток. |
Раздел: Рефераты по коммуникации и связи Тип: курсовая работа |