Реферат: Излучение электромагнитных волн

Содержание

Введение

1)  Предсказание Максвелла

2)  Опыты Герца

3)  Изобретение радио Поповым

4)  Список использованной литературы


Введение

Волновые процессы чрезвычайно широко распространены в природе. Волны бывают двух видов: поперечные и продольные. Поперечными называют волны, распространяющиеся в перпендикулярном направлении распространению волны. Продольными волнами называют волны, распространяющиеся вдоль направлению распространению волны. Основное свойство всех волн независимо от их природы состоит в перемещении энергии без переноса вещества.

Фундаментальные законы природы могут дать гораздо больше, чем заключено в тех фактах, на основе которых они получены. Одним из таких относятся открытые Максвеллом законы электромагнетизма.


Предсказание Максвелла

 

Максвелл (Maxwell) Джеймс Клерк (Clerk) (13.6.1831, Эдинбург, — 5.11.1879, Кембридж), английский физик, создатель классической электродинамики, один из основателей статистической физики. Член Лондонского королевского общества (1860). Сын шотландского дворянина из знатного рода Клерков. Учился в Эдинбургском (1847—50) и Кембриджском (1850—54) университетах. Профессор Маришал-колледжа в Абердине (1856—60), затем Лондонского университета (1860—65). С 1871 профессор Кембриджского университета, где Максвелл основал первую в Великобритании специально оборудованную физическую лабораторию — Кавендишскую лабораторию, директором которой он был с 1871.

В 1864 году Дж. Максвеллом было теоретически предсказано существование электромагнитных волн. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. Е. систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов:

1.  Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле.

2.  Электромагнитные волны распространяются в веществе с конечной скоростью.

3.  В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры».

4.  Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии.

5.  Из теории Максвелла следовало, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц.

6.  Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн.

7.  Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Г. Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. П. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.


Опыты Герца

Генрих Рудольф Герц родился 22 февраля 1857, в Гамбурге, Германия. Его отец, Густав Фердинанд Герц, был юрисконсультом в Гамбурге, его мать, Анна Элизабет Пфефферкорн, — дочь армейского доктора. Обучаясь в школе при Университете Гамбурга, он проявил способность к наукам и языкам, изучая арабский и Санскрит. Он изучил науки и стажировался в немецких городах Дрездена, Мюнхена и Берлина. Герц был студентом Кирхгофа и Гельмгольца. В 1880 он получил степень доктора философии и остался учеником Гельмгольца до 1883, когда он стал лектором теоретической физики в Университете Киля. В 1885 году он стал профессором в Университете Карлсруэ, где сделал научное открытие о существовании электромагнитных волн.

В 1887 году Г. Герцем впервые экспериментально получены электромагнитные волны. В его опытах ускоренное движение электрических зарядов возбуждались в двух металлических стержнях с шарами на концах (вибратор Герца). Колебания электрических зарядов в вибраторе создают электромагнитную волну. Только колебания в вибраторе совершает не одна заряженная частица, а огромное число электронов, движущихся согласовано. В электромагнитной волне векторы Е и В перпендикулярны друг другу. Вектор Е лежит в плоскости, проходящей через вибратор, а вектор В перпендикулярен этой плоскости. Излучение волн происходит с максимальной интенсивностью в направлении, перпендикулярном оси вибратора. Вдоль оси излучения не происходят. В обычном колебательном контуре (его можно назвать закрытым), почти всё магнитное поле сосредоточено внутри катушки, а электрическое внутри конденсатора. Вдали от контура электромагнитного поля практически нет. Такой контур очень слабо излучает электромагнитные волны. Для получения электромагнитных волн Герц использовал простое устройство, называемое сейчас вибратором Герца. Это устройство представляет собой открытый колебательный контур.

В его опытах ускоренное движение электрических зарядов возбуждались в двух металлических стержнях с шарами на концах (вибратор Герца). Колебания электрических зарядов в вибраторе создают электромагнитную волну. Только колебания в вибраторе совершает не одна заряженная частица, а огромное число электронов, движущихся согласовано. В электромагнитной волне векторы Е и В перпендикулярны друг другу. Вектор Е лежит в плоскости, проходящей через вибратор, а вектор В перпендикулярен этой плоскости. Излучение волн происходит с максимальной интенсивностью в направлении, перпендикулярном оси вибратора. Вдоль оси излучения не происходят. В обычном колебательном контуре (его можно назвать закрытым), почти всё магнитное поле сосредоточено внутри катушки, а электрическое внутри конденсатора. Вдали от контура электромагнитного поля практически нет. Такой контур очень слабо излучает электромагнитные волны. Для получения электромагнитных волн Герц использовал простое устройство, называемое сейчас вибратором Герца. Это устройство представляет собой открытый колебательный контур. К открытому колебательному контуру можно перейти от закрытого, если постепенно раздвигать пластины конденсатора, уменьшая их площадь и одновременно уменьшая число витков в катушке. В конце концов, получится прямой провод. Это и есть открытый колебательный контур. Емкость и индуктивность вибратора Герца малы. Поэтому частота колебаний весьма велика. В опытах Герца длина волны составляла несколько десятков сантиметров. Вычислив собственную частоту электромагнитных колебаний вибратора, Герц смог определить скорость электромагнитной волны. Она оказалась приближенно равна скорости света. Что в результате явилось блестящим подтверждением предсказания Максвелла.

максвелл электромагнитная волна


Изобретение радио Поповым

Алекса́ндр Степа́нович Попо́в (4 марта 1859, посёлок Турьинские Рудники Пермской губернии (ныне Краснотурьинск, Свердловская область) — 31 декабря 1905, Петербург). Родился в семье местного священника, кроме Александра было ещё 6 человек детей. Жили более чем скромно. Поэтому Сашу отдали учиться сначала в начальное духовное училище, а затем в духовную семинарию, где детей духовенства обучали бесплатно. После окончания общеобразовательных классов Пермской духовной семинарии Александр успешно сдал вступительные экзамены на физико-математический факультет Петербургского университета. Успешно окончив университет в 1882 году, А.С. Попов получил приглашение остаться там для подготовки к профессорской деятельности по кафедре физики. Но молодого учёного больше привлекали экспериментальные исследования в области электричества, и он поступил преподавателем физики и электротехники в Минный офицерский класс в Кронштадте, где имелся хорошо оборудованный физический кабинет. В 1890 году получил приглашение на должность преподавателя физики в Техническое училище Морского ведомства в Кронштадте. В этот период всё своё свободное время Попов посвящает физическим опытам, главным образом, изучению электромагнитных колебаний. В 1901 году Попова назначили профессором Петербургского электротехнического института, а в 1905 году его избрали ректором этого института. Попов был Почётным инженером-электриком (1900) и почётным членом Русского технического общества (1901).

Опыты Герца заинтересовали физиков всего мира. Ученые стали искать пути усовершенствования излучателя и приемника электромагнитных волн. В России одним из первых занялся изучением электромагнитных волн преподаватель офицерских курсов в Кронштадте Александр Степанович Попов.

В качестве детали, непосредственно "чувствующей" электромагнитные волны, А.С. Попов применил когерер. Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000-500 Ом, т. е. в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимую для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Цепь электрического звонка замыкалась с помощью чувствительного реле в момент прихода электромагнитной волны. С окончанием приема волны работа звонка сразу прекращалась, так как молоточек звонка ударял не только по звонковой чашечке, но и по когереру. С последним встряхиванием когерера аппарат был готов к приему новой волны.

Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Хотя современные радиоприемники очень мало напоминают приемник А.С. Попова, основные принципы их действия те же, что и в его приборе. Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А.С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

7 мая 1895 г. на заседании Русского физико-химического общества в Петербурге А.С. Попов продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником. День 7 мая стал днем рождения радио.


Список использованной литературы

1)  Советский энциклопедический словарь (издание второе)

2)  Физика справочные материалы О.Ф. Кабардин

3)  Физика 11. Г.Я. Мякишев Б.Б. Буховцев

Углубленные экзаменационные билеты по физике и ответы (11 класс)
Билет № 1 Механическое движение тела- изменение его положения в пространстве относительно других тел. Основная задача механики- определять положение ...
Явление электромагнитной индукции состоит в появлении ЭДС в контуре при изменении:1)магнитного потока через площадку, ограниченную контуром; 2)площади замкнутого контура ...
Однажды начавшийся в некоторой ты=очке пространства процесс изменения электромагнитного поля охватывает все новые и новые области окружающего пространства (Максвелл). =1/ 0 0 ...
Раздел: Рефераты по физике
Тип: реферат
Владимирский областной промышленно - коммерческий лицей р е ф е р а т тема: Электромагнитные волны Выполнил: ученик 11 "Б" класс Львов Михаил Проверил ...
Для получения электромагнитных волн Г. Герц использовал простое устройство, называемое сейчас вибратором Герца.
Герц смог определить скорость электромагнитной волны по формуле с = ѭ v. Она оказалась приближенно равной скорости света: с = 300 000 км/с. Опыты Герца блестяще подтвердили ...
Раздел: Рефераты по физике
Тип: реферат
Классическая наука: летопись открытий
конец XVII в - конец XIX в.) Классическая физика начинается И.Ньютоном, заложившим основы той совокупности законов природы, которая дает возможность ...
Первый ощутимый удар по физике Ньютона нанесла еще в 60-х годах XIX в. теория электромагнитного поля Максвелла - вторая после ньютоновской механики великая физическая теория ...
Г.Герц сконструировал генератор электромагнитных колебаний (вибратор Герца).
Раздел: Рефераты по науке и технике
Тип: шпаргалка
Исследование работ Фарадея по электричеству
Содержание Введение Глава 1. Исследование электродинамики Фарадея 1.1 Исследование развития электродинамики до Фарадея 1.2 Труды М.Фарадея по ...
Максвелл, отстаивая выдвинутую Фарадеем идею близкодействия, доказал, что электрические и магнитные поля взаимосвязаны и могут существовать независимо от создавшего их источника ...
Зная период колебаний вибратора и измерив длину волны, Герц вычислил скорость распространения электромагнитных волн; она оказывается равной скорости света.
Раздел: Рефераты по физике
Тип: дипломная работа
... обжима трубчатых заготовок давлением импульсного магнитного поля
ОГЛАВЛЕНИЕ ВВЕДЕНИЕ 1. СОВРЕМЕННОЕ СОСТОЯНИЕ ТЕОРИИ И ТЕХНОЛОГИИ МАГНИТНО-ИМПУЛЬСНОЙ ОБРАБОТКИ МЕТАЛЛОВ 1.1 Математические модели электродинамических ...
Использование методов теории поля позволяет рассчитать переходный процесс в разрядном контуре и диффузию поля в массивные проводники системы, на основе которых исследуется ...
1. МИОМ - сложный электромагнитно-механический процесс, в котором одновременно протекают и взаимодействуют электрические, магнитные и механические процессы.
Раздел: Промышленность, производство
Тип: дипломная работа