Реферат: Двойное векторное произведение

Выполнила: Ильенко  Ульяна Игоревна, студентка 1 курса, математического факультета

Запорожский национальный университет

Запорожье, 2006 год

Трём векторам a, b и c можно поставить в соответствие вектор, равный a×(b×c). Этот вектор называют двойным векторным произведением векторов a, b и c. Двойное векторное произведение встречается в механике и физике.

Двойное векторное произведение выражается через линейную комбинацию двух или трёх своих сомножителей по формуле

a×(b×c) = b(ac) - c(ab).

Докажем это. Обозначим через x разность левой и правой частей этого равенства

x = a×(b×c) - b(ac) + c(ab).

Нам достаточно показать, что x = 0.

Предположим, что векторы b и c коллинеарны. Если они оба нулевые, то в выражении для вектора x все слагаемые равны нулевому вектору и поэтому равенство

x = 0 выполнено. Если же один из коллинеарных векторов b, c ненулевой, например c, то для другого вектора при некотором α є R выполнено равенство b=αc. Но тогда

x=a×(αc×c)-αc(ac)+cα(ac)=0.

Предположим теперь, что векторы b и c неколлинеарны. Тогда их векторное произведение не равно нулевому вектору и ортогонально ненулевому вектору b. Векторы

образуют правый ортонормированный базис в V3 (это и отражается в обозначениях). В этом базисе справедливы следующие разложения векторов:

b=|b|i , c = c1i+c2k , a = a1i + a2j + a3k ,

и поэтому

b×c = - |b|c2j , a×(b×c) = - |b|c2(a1k – a3i).

Кроме того,

ac = a1c1 – a3c2 , ab = a1|b|.

В результате находим, что и в случае неколлинеарных векторов b и c выполнено равенство

x= -|b|c2(a1k – a3i) – (a1c1 – a3c2)|b|i + a1|b|(c1i + c2k) = 0.

Произведение (a×b)×c ортогонально вектору a×b, то есть в случае, когда векторы a и b не коллинеарны, лежит в плоскости векторов a и b. Следовательно, оно разлагается по векторам a и b, то есть существуют такие два числа x и y, что

(a×b)×c=xa+yb.

Чтобы найти эти числа, мы воспользуемся леммой, согласно которой существуют положительно ориентированный ортонормированный базис е1, е2, е3 ,связанный с векторами a, b и с формулами

a=a1e1

b=b1e1+b2e2,

c=c1e1+c2e2+c3e3.

В этом базисе вектор a×b имеет координаты (0,0, a1b2) , и потому вектор (a×b)×c – координаты


Так как вектор xa+yb имеет координаты (xa1+yb1, yb2, 0), то, следовательно, формула (a×b)×c=xa+yb будет иметь место при

x = -b1c1 – b2c2 , y = a1c1.

Поскольку, с другой стороны, а1с1 = ас и b1c1+b2c2 = bc, этим доказано следующее предложение:

ПРЕДЛОЖЕНИЕ. Для любых векторов a, b, c имеет место равенство (a×b)×c=(ac)b-(bc)a.

Из этой формулы непосредственно вытекает следующее тождество Якоби:

(a×b)×c+(c×a)×b+(b×c)×a=0.

Действительно, в силу коммутативности скалярного умножения

(ac)b-(bc)a+(cb)a-(ab)c+(ba)c-(ca)b=0.

С помощью формулы (a×b)×c=(ac)b-(bc)a легко вычисляется также скалярное произведение (a×b)(x×y) двух векторных произведений. Действительно пользуясь антикоммутативностью смешанного произведения, мы немедленно получим, что

(a×b)(x×y)=((xa)y-(ya)x)b=(xa)(yb)-(ya)(xb),

то есть

Определитель в правой части этой формулы называется взаимным определителем Грамма пар векторов a,b и x,y.

При a=x и b=y формула даёт формулу


которую можно переписать также в следующем изящном виде:

|a×b|2+|ab|2 = a2 b2.

Определитель в правой части предыдущей формулы называется определителем Грамма пары векторов a и b.

Поскольку |a×b| равно площади S параллелограмма, построенного на векторах a, b, формула

равносильна формуле

в которой векторные произведения явно не участвуют. Таким образом, мы видим, что определитель Грама пары векторов равен квадрату площади параллелограмма, построенного на этих векторах.

Вычислив скалярные произведения через координаты мы немедленно получим следующее тождество Лагранжа :

При а3=0 , b3 = 0 («случай плоскости») тождество Лагранжа равносильно тождеству

(a21+a22)(b21+b22) = (a1b1 + a2b2)2 + (a1b2 – a2b1)2,

Известному из теории комплексных чисел (тождество выражает тот факт, что произведение модулей комплексных чисел a1+ia2 и b1+ib2 равно модулю их произведения).

Аналогом вышеприведённых формулы и тождества существует и для трёх векторов a, b, c. В нём участвует определитель

называемый определителем Грамма тройки векторов a, b, c. В координатах относительно ортонормированного базиса e1, e2, e3 , в котором векторы a, b, c выражаются по формулам

a=a1e1

b=b1e1+b2e2,

c=c1e1+c2e2+c3e3 , этот определитель имеет вид

Автоматическое вычисление показывает, что он равен a21b22c23. С другой стороны, как мы уже знаем, a1b2c3= abc. Таким образом

, то есть

где V – объём параллелепипеда, построенного на векторах a, b, c.

Аналог формулы имеет вид

где определитель справа называется взаимным определителем Грама троек a, b, c и x, y, z.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://referat.ru/

Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ ...
Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит. Полем наз. Числ множ. На котором выполняются 4 операции: слож ...
Свойства умнож-я: 1.(Для люб. а,bѭN) ab=ba 2. (для люб. a,b,c ѭN) (ab)c=a(bc) 3.(a,b,cѭN) a(b+c)=ab+ac
Векторным произведением векторов a" и b" называется третий вектор c" который удовлетворяет условиям:
Раздел: Рефераты по математике
Тип: реферат
Программа государственного экзамена по математике для студентов ...
Программа государственного экзамена по математике для студентов математического факультета Московского городского педагогического университета Алгебра ...
Доказательство. а) Из определения функции t(x) немедленно следует указанное тождество, поскольку в силу основного тождества легко подсчитать число слагаемых, каждое из которых ...
1. Координатное пространство kn имеет стандартный базис из единичных векторов ei := (0, . . . , 0, 1, 0, . . . , 0) ( единица находится на месте с номером i), следовательно, dim kn ...
Раздел: Рефераты по математике
Тип: реферат
Линейная Алгебра. Теория групп
... алгебраической операции Говорят, что на множестве S определена (бинарная) алгебраическая операция (АО) " *", если для всяких двух его элементов x и y ...
Говорят, что на множестве S определена (бинарная) алгебраическая операция (АО) " *", если для всяких двух его элементов x и y однозначно определен элемент z=x*y называемый ...
Это можно проделать, используя тождество: -3xyz= (x+y+z)( -xy-xz-yz)=(x+y+z)S. Достаточно вэять x=d, y=e, z=f и домножить числитель и знаменатель на S. Следовательно, [Q() :Q]=3 и ...
Раздел: Рефераты по математике
Тип: реферат
Логическое и функциональное программирование
ЛОГИЧЕСКОЕ И ФУНКЦИОНАЛЬНОЕ ПРОГРАММИРОВАНИЕ Введение Целью логического и функционального программирования является вывод решений и они тесно связаны ...
При доказательстве утверждения (3) базисом индукции является утверждение U(a), индукционным шагом - утверждение ("n:a$n<b)(U(n)°U(n+1)), предположением индукции U(k), где k ...
Таким образом, термами будут: a, b, c, f(a), g(f(x), y).
Раздел: Рефераты по информатике, программированию
Тип: учебное пособие
Нечеткие множества в системах управления
В. Я. Пивкин, Е. П. Бакулин, Д. И. Кореньков Нечеткие множества в системах управления Под редакцией доктора технических наук, профессора Ю.Н ...
Докажем, что свойство дистрибутивности не выполняется, т.е. A (B C) (A B)(A C). Для левой части имеем: a(b+c-bc) = ab+ac-abc; для правой: ab+ac-(ab)(ac) = ab+ac+a2bc.
С = А B C(z)=( A(x) B(y))
Раздел: Рефераты по логике
Тип: реферат