Реферат: Мониторинг зданий и сооружений
Министерство сельского хозяйства Российской Федерации
ФГОУ ВПО
«Московский Государственный Университет Природообустройства»
Строительный факультет
Кафедра экспертизы и управления недвижимостью
Реферат
на тему: «Мониторинг зданий и сооружений»
Выполнили
студентки группы 419 В.И. Рыбина
Н.С. Филатова
Проверил В.Я. Жарницкий
Москва 2011 г.
Содержание
Введение
Основные термины
1. Общие правила проведения обследования и мониторинга технического состояния зданий и сооружений
2. Мониторинг технического состояния зданий и сооружений. Основные положения
3. Общий мониторинг технического состояния зданий и сооружений
4. Мониторинг технического состояния зданий и сооружений, находящихся в ограниченно работоспособном или аварийном состоянии
5. Мониторинг технического состояния зданий и сооружений, попадающих в зону влияния нового строительства, реконструкции или природно-техногенных воздействий
6. Мониторинг технического состояния уникальных зданий и сооружений
7. Общие требования к проектированию и разработке автоматизированных стационарных систем мониторинга технического состояния зданий (сооружений)
8. Требования к мониторингу общей безопасности объектов (с комплексной оценкой риска от аварийных воздействий природного и техногенного характера)
9. Геотехнический мониторинг зданий и сооружений (включая геодезический мониторинг)
10. Организация мониторинга зданий и сооружений в городе Москва
11. Примеры проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий
Литература
Приложения
Введение
Для современного этапа экономического и общественного развития в России характерно расширение строительного производства и проведение масштабного строительства в крупных городах, в первую очередь, в Москве и Санкт-Петербурге, сопровождающееся постоянным ростом сложности возводимых объектов и условий, в которых осуществляется их строительство. Это неизбежно порождает новые задачи, связанные с обеспечением безопасной жизнедеятельности в условиях мегаполиса, определяющейся, во-первых, надежностью самих строящихся сооружений, и, во-вторых, влиянием проводимого строительства на уже существующую инфраструктуру.
Современные тенденции в строительстве, а именно - увеличение этажности зданий, уплотнение городской застройки, стесненность строительных площадок, освоение подземного пространства, насыщение инженерными коммуникациями неизменно приводят к возникновению и последующему увеличению негативного техногенного воздействия проводимого строительства на уже построенные объекты, расположенные в прилегающих зонах.
В связи с этим особое значение приобретает проблема контроля технического состояния зданий и сооружений с целью предупреждения возникновения аварийных ситуаций и обоснованность выбора комплекса инженерных мероприятий по их недопущению. При этом очевидно, что контроль технического состояния несущих конструкций должен носить систематический характер и позволять осуществлять оценку происходящих изменений на основе количественных критериев, т.е. базироваться на процедурах выявления соответствия фактической прочности, жесткости и устойчивости конструктивных элементов нормативным требованиям.
В настоящее время в г.Москва проводятся работы по обследованию технического состояния отдельных объектов. Однако большое количество зданий и сооружений не охвачено вообще никаким контролем, хотя жизнедеятельность города динамично приводит как к ухудшению свойств грунтов, так и к негативным воздействиям силового и не силового характера на наземные конструкции зданий и сооружений. Все это в условиях исчерпания нормативных сроков эксплуатации большого количества объектов не допустимо и требует системно организованных наблюдений. Ведь сроки эксплуатации многих зданий в нашей стране давно превысили все допустимые нормы, происходит накопление физического износа, что крайне опасно для жизнедеятельности людей. Такие здания нуждаются в постоянном контроле их технического состояния. И если в Москве и Санкт-Петербурге производится хоть какой-то контроль технического состояния зданий, то на периферии этот вопрос до сих пор остается без внимания.
Основные термины
Здание - результат строительства, представляющий собой объемную строительную систему, имеющую надземную и (или) подземную части, включающую в себя помещения, сети инженерно-технического обеспечения и системы инженерно-технического обеспечения и предназначенную для проживания и (или) деятельности людей, размещения производства, хранения продукции или содержания животных.
Сооружение - результат строительства, представляющий собой объемную, плоскостную или линейную строительную систему, имеющую наземную, надземную и (или) подземную части, состоящую из несущих, а в отдельных случаях и ограждающих строительных конструкций и предназначенную для выполнения производственных процессов различного вида, хранения продукции, временного пребывания людей, перемещения людей и грузов.
Уникальные здания и сооружения – сооружения, на которые в проектной документации предусмотрена хотя бы одна из следующих характеристик:
- использование конструкций и конструктивных систем, требующих применения нестандартных методов расчета, либо разработки специальных методов расчета, либо требующих экспериментальной проверки на физических моделях, а также применяемых на территориях, сейсмичность которых превышает 9 баллов;
- высота более 100 м;
- пролет более 100 м;
- вылет консолей более 20 м;
- заглубление подземной части ниже планировочной отметки земли более чем на 10 метров.
К уникальным зданиям и сооружениям следует относить, также, зрелищные, спортивные, культовые сооружения, выставочные павильоны, многофункциональные офисные, торгово-развлекательные комплексы и т.п. с максимальным расчётным пребыванием более 1000 человек внутри объекта или более 10000 человек вблизи объекта.
Жизненный цикл здания или сооружения - период, в течение которого осуществляются инженерные изыскания, проектирование, строительство (в том числе консервация), эксплуатация (в том числе текущие ремонты), реконструкция, капитальный ремонт, снос здания или сооружения.
Воздействие - явление, вызывающее изменение напряженно-деформированного состояния строительных конструкций и (или) основания здания или сооружения.
Нагрузка - механическая сила, прилагаемая к строительным конструкциям и (или) основанию здания или сооружения и определяющая их напряженно-деформированное состояние
Нормальные условия эксплуатации - учтенное при проектировании состояние здания или сооружения, при котором отсутствуют какие-либо факторы, препятствующие осуществлению функциональных или технологических процессов.
Динамические параметры зданий и сооружений - параметры зданий и сооружений, характеризующие их динамические свойства, проявляющиеся при динамических нагрузках, и включающие в себя периоды и декременты собственных колебаний основного тона и обертонов, передаточные функции объектов, их частей и элементов и др.
Физический износ здания - ухудшение технических и связанных с ними эксплуатационных показателей здания, вызванное объективными причинами.
Моральный износ здания - постепенное (во времени) отклонение основных эксплуатационных показателей от современного уровня технических требований эксплуатации зданий и сооружений.
Текущее техническое состояние зданий и сооружений - техническое состояние зданий и сооружений на момент их обследования или проводимого этапа мониторинга.
Аварийное состояние - категория технического состояния строительной конструкции или здания и сооружения в целом, включая состояние грунтов основания, характеризующаяся повреждениями и деформациями, свидетельствующими об исчерпании несущей способности и опасности обрушения и (или) характеризующаяся кренами, которые могут вызвать потерю устойчивости объекта.
Обследование - комплекс мероприятий по определению и оценке фактических значений контролируемых параметров, характеризующих эксплуатационное состояние, пригодность и работоспособность объектов обследования и определяющих возможность их дальнейшей эксплуатации или необходимость восстановления и усиления.
Мониторинг - это систематическое или периодическое наблюдение за деформационно-напряжённым состоянием конструкций, или деформациями зданий (или сооружений) в целом, за состоянием грунтов, оснований и подземных вод в зоне строительства, своевременная фиксация и оценка отступлений от проекта, требований нормативных документов, сопоставление результатов прогноза взаимного влияния объекта и окружающей среды с результатами наблюдений с целью оперативного предупреждения или устранения выявленных негативных явлений и процессов.
Общий мониторинг технического состояния зданий и сооружений - система наблюдения и контроля, проводимая по определенной программе, утверждаемой заказчиком, для выявления объектов, на которых произошли значительные изменения напряженно-деформированного состояния несущих конструкций или крена, и для которых необходимо обследование их технического состояния (изменения напряженно-деформированного состояния характеризуются изменением имеющихся и возникновением новых деформаций или определяются путем инструментальных измерений).
Мониторинг технического состояния зданий и сооружений, попадающих в зону влияния строек и природно-техногенных воздействий - система наблюдения и контроля, проводимая по определенной программе на объектах, попадающих в зону влияния строек и природно-техногенных воздействий, для контроля их технического состояния и своевременного принятия мер по устранению возникающих негативных факторов, ведущих к ухудшению этого состояния.
Мониторинг технического состояния зданий и сооружений, находящихся в ограниченно работоспособном или аварийном состоянии - система наблюдения и контроля, проводимая по определенной программе для отслеживания степени и скорости изменения технического состояния объекта и принятия, в случае необходимости, экстренных мер по предотвращению его обрушения или опрокидывания, действующая до момента приведения объекта в работоспособное техническое состояние.
Мониторинг технического состояния уникальных зданий и сооружений - система наблюдения и контроля, проводимая по определенной программе для обеспечения безопасного функционирования зданий и сооружений за счет своевременного обнаружения на ранней стадии негативного изменения напряженно-деформированного состояния конструкций и грунтов оснований или крена, которые могут повлечь за собой переход объектов в ограниченно работоспособное или в аварийное состояние.
Система мониторинга технического состояния несущих конструкций - совокупность технических и программных средств, позволяющая осуществлять сбор и обработку информации о различных параметрах строительных конструкций (геодезические, динамические, деформационные и др.) с целью оценки технического состояния зданий и сооружений.
Система мониторинга инженерно-технического обеспечения - совокупность технических и программных средств, позволяющая осуществлять сбор и обработку информации о различных параметрах работы системы инженерно-технического обеспечения здания (сооружения) с целью контроля возникновения в ней дестабилизирующих факторов и передачи сообщений о возникновении или прогнозе аварийных ситуаций в единую систему оперативно-диспетчерского управления города.
Усиление - комплекс мероприятий, обеспечивающих повышение несущей способности и эксплуатационных свойств строительной конструкции или здания и сооружения в целом, включая грунты основания, по сравнению с фактическим состоянием или проектными показателями.
Восстановление - комплекс мероприятий, обеспечивающих доведение эксплуатационных качеств конструкций, пришедших в ограниченно работоспособное состояние, до уровня их первоначального состояния, определяемого соответствующими требованиями нормативных документов на момент проектирования объекта.
Реконструкция - изменение параметров объектов капитального строительства, их частей (высоты, количества этажей (далее - этажность), площади, показателей производственной мощности, объема) и качества инженерно-технического обеспечения.
1. Общие правила проведения обследования и мониторинга технического состояния зданий и сооружений
Ø Обследование и мониторинг технического состояния зданий и сооружений проводятся специализированными организациями, оснащенными современной приборной базой и имеющими в своем составе высококвалифицированных и опытных специалистов. Требования к специализированным организациям, осуществляющим обследование и мониторинг технического состояния зданий и сооружений, определяются федеральным органом исполнительной власти, уполномоченным на ведение государственного строительного надзора. Федеральным органом исполнительной власти, уполномоченным на ведение государственного строительного надзора, также ведется реестр специализированных организаций.
Ø Обследование и мониторинг технического состояния зданий и сооружений проводят:
- не позднее чем через два года после их ввода в эксплуатацию. В дальнейшем – не реже одного раза в 10 лет и не реже одного раза в пять лет для зданий и сооружений или их отдельных элементов, работающих в неблагоприятных условиях (агрессивные среды, вибрации, повышенная влажность, сейсмичность района 7 баллов и более и др.). Для уникальных зданий и сооружений устанавливается постоянный режим мониторинга;
- по истечении нормативных сроков эксплуатации зданий и сооружений;
- при обнаружении значительных дефектов, повреждений и деформаций в процессе технического обслуживания, осуществляемого собственником здания (сооружения);
- по результатам последствий пожаров, стихийных бедствий, аварий, связанных с разрушением здания (сооружения);
- по инициативе собственника объекта;
- при изменении технологического назначения здания (сооружения);
- по предписанию органов, уполномоченных на ведение государственного строительного надзора.
Ø Результаты обследования и мониторинга технического состояния зданий и сооружений в виде соответствующих заключений должны содержать необходимые данные для принятия обоснованного решения по реализации целей проведения обследования или мониторинга.
Ø Средства испытаний, измерений и контроля, применяемые при обследовании и мониторинге технического состояния объектов, должны быть подвергнуты своевременной поверке (калибровке) в установленном порядке и соответствовать нормативным документам и технической документации по метрологическому обеспечению.
Ø При выполнении работ по обследованию и мониторингу технического состояния объектов должны соблюдаться правила техники безопасности.
Ø При обнаружении во время проведения работ повреждений конструкций, которые могут привести к резкому снижению их несущей способности, обрушению отдельных конструкций или серьезному нарушению нормальной работы оборудования, кренам, способным привести к потере устойчивости здания или сооружения, необходимо немедленно проинформировать об этом, в том числе в письменном виде, собственника объекта, эксплуатирующую организацию, местные органы исполнительной власти и органы, уполномоченные на ведение государственного строительного надзора.
Ø Заключения по итогам проведенного обследования технического состояния зданий и сооружений или этапа их мониторинга подписывают непосредственно исполнители работ, руководители их подразделений и утверждают руководители организаций, проводивших обследование или этап мониторинга.
2. Мониторинг технического состояния зданий и сооружений. Основные положения
ü Мониторинг технического состояния зданий и сооружений проводят для:
- контроля технического состояния зданий и сооружений и своевременного принятия мер по устранению возникающих негативных факторов, ведущих к ухудшению этого состояния;
- выявления объектов, на которых произошли изменения напряженно-деформированного состояния несущих конструкций и для которых необходимо обследование их технического состояния;
- обеспечения безопасного функционирования зданий и сооружений за счет своевременного обнаружения на ранней стадии негативного изменения напряженно-деформированного состояния конструкций и грунтов оснований, которые могут повлечь переход объектов в ограниченно работоспособное или в аварийное состояние;
- отслеживания степени и скорости изменения технического состояния объекта и принятия в случае необходимости экстренных мер по предотвращению его обрушения.
ü При выборе системы наблюдений необходимо учитывать цель проведения мониторинга, а также скорости протекания процессов и их изменение во времени, продолжительность измерений, ошибки измерений, в том числе за счет изменения состояния окружающей среды, а также влияния помех и аномалий природно-техногенного характера. Программу проведения мониторинга согласовывают с заказчиком. В ней, наряду с перечислением видов работ, устанавливают периодичность наблюдений с учетом технического состояния объекта и общую продолжительность мониторинга.
ü Методика и объем системы наблюдений при мониторинге, включая измерения, должны обеспечивать достоверность и полноту получаемой информации для подготовки исполнителем обоснованного заключения о текущем техническом состоянии объекта (объектов).
ü В ходе длительных наблюдений и при изменении внешних условий необходимо обеспечить учет изменения условий и компенсационные поправки (температурные, влажностные и т.п.) для измерительных устройств.
ü Используемые для наблюдений средства измерений и оборудование должны быть сертифицированы, поверены (калиброваны) и аттестованы уполномоченными органами.
ü В результате проведения каждого этапа мониторинга должна быть получена информация, достаточная для подготовки обоснованного заключения о текущем техническом состоянии здания или сооружения и выдачи краткосрочного прогноза о его состоянии на ближайший период.
ü Первоначальным этапом мониторинга технического состояния зданий и сооружений (за исключением общего мониторинга технического состояния зданий и сооружений) является обследование технического состояния этих зданий и сооружений. На этом этапе устанавливают категории технического состояния зданий и сооружений, фиксируют дефекты конструкций, за изменением состояния которых (а также за возникновением новых дефектов) будут осуществляться наблюдения при мониторинге.
ü В случае получения на каком-либо этапе мониторинга данных, указывающих на ухудшение технического состояния всей конструкции или ее элементов, которое может привести к обрушению здания или сооружения, организация, проводящая мониторинг, должна немедленно проинформировать об этом, в том числе в письменном виде, собственника объекта, эксплуатирующую организацию, местные органы исполнительной власти, территориальные органы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий, а на объектах, поднадзорных Ростехнадзору, - также территориальные органы Ростехнадзора.
3. Общий мониторинг технического состояния зданий и сооружений
· Общий мониторинг технического состояния зданий и сооружений проводят для выявления объектов, изменение напряженно-деформированного состояния которых требует обследования их технического состояния.
· При общем мониторинге, как правило, не проводят обследование технического состояния зданий и сооружений в полном объеме, а проводят визуальный осмотр конструкций с целью приблизительной оценки категории технического состояния, измеряют динамические параметры конкретных зданий и сооружений (приложение I.) и составляют паспорт здания или сооружения (приложение II).
· Если по результатам приблизительной оценки категория технического состояния здания или сооружения соответствует нормативному или работоспособному техническому состоянию, то повторные измерения динамических параметров проводят через два года.
· Если по результатам повторных измерений динамических параметров их изменения не превышают 10 %, то следующие измерения проводят еще через два года.
· Если по результатам приблизительной оценки категория технического состояния здания или сооружения соответствует ограниченно работоспособному или аварийному состоянию или если при повторном измерении динамических параметров здания или сооружения результаты измерений различаются более чем на 10 %, то техническое состояние такого здания или сооружения подлежит обязательному внеплановому обследованию.
· По результатам общего мониторинга технического состояния зданий и сооружений исполнитель составляет заключение (приложение III) по этапу общего мониторинга технического состояния зданий и сооружений и заключения о техническом состоянии каждого здания и сооружения, по которым проводился общий мониторинг технического состояния (приложение I).
4. Мониторинг технического состояния зданий и сооружений, находящихся в ограниченно работоспособном или аварийном состоянии
Ø При мониторинге технического состояния зданий и сооружений, категория технического состояния которых соответствует ограниченно работоспособному или аварийному состоянию, контролируют процессы, протекающие в конструкциях зданий и сооружений и грунте до выполнения работ по восстановлению или усилению объектов и во время проведения таких работ.
Ø На каждой стадии мониторинга технического состояния конструкций зданий и сооружений и грунта проводят следующие работы:
- определяют текущие динамические параметры объекта и сравнивают их с параметрами, измеренными на предыдущем этапе;
- фиксируют степень изменения ранее выявленных дефектов и повреждений конструкций объекта и выявляют вновь появившиеся дефекты и повреждения;
- проводят повторные измерения деформаций, кренов, прогибов и т.п. и сравнивают их со значениями аналогичных величин, полученными на предыдущем этапе;
- анализируют полученную на данном этапе мониторинга информацию и делают заключение о текущем техническом состоянии объекта.
Ø По результатам технического состояния зданий и сооружений, находящихся в ограниченно работоспособном или аварийном состоянии составляется заключение в установленной форме (приложение IV).
5. Мониторинг технического состояния зданий и сооружений, попадающих в зону влияния нового строительства, реконструкции или природно-техногенных воздействий
· Реализация целей мониторинга технического состояния зданий и сооружений, попадающих в зону влияния нового строительства и природно-техногенных воздействий, осуществляется на основе:
- определения абсолютных и относительных значений деформаций конструкций зданий и сооружений и сравнения их с расчетными и допустимыми значениями;
- выявления причин возникновения и степени опасности деформаций для нормальной эксплуатации объектов;
- принятия своевременных мер по борьбе с возникающими деформациями или по устранению их последствий;
- уточнения расчетных данных и физико-механических характеристик грунтов;
- уточнения расчетных схем для различных типов зданий, сооружений и коммуникаций;
- установления эффективности принимаемых профилактических и защитных мероприятий;
- уточнения закономерностей процесса сдвижения грунтовых пород и зависимости его параметров от основных влияющих факторов.
· Мониторинг технического состояния зданий и сооружений, попадающих в зону влияния нового строительства и природно-техногенных воздействий, планируют до начала строительства или ожидаемого природно-техногенного воздействия.
· Научно-техническое сопровождение и мониторинг нового строительства или реконструкции объектов допускается осуществлять в соответствии с МРДС 02-2008 «Пособие по научно-техническому сопровождению и мониторингу строящихся зданий и сооружений, в том числе большепролетных, высотных и уникальных».
· При мониторинге технического состояния зданий и сооружений, попадающих в зону влияния нового строительства или реконструкции объектов, устраиваемых открытым способом, используют данные (радиус зоны влияния, дополнительные деформации и др.) в соответствии с МГСН 2.07-2001 «Основания, фундаменты и подземные сооружения».
· Оценку зоны влияния динамических воздействий на окружающие здания и сооружения при погружении свайных элементов строящихся зданий проводят в соответствии со СНиП 3.02.01-87 «Земляные сооружения, основания и фундаменты».
· Внешние границы мульды сдвижения на земной поверхности при подземном способе возведения объекта определяют по граничным углам, а внешние границы опасной ее части – по углам сдвижения. Значения этих углов зависят от свойств горных пород и определяются опытным путем. При отсутствии опытных данных значения граничных углов и углов сдвижения определяют в соответствии с нормативной документацией [3]. Углы разрывов принимаются на 10° более углов сдвижения.
· Определение значений ожидаемых максимальных сдвижений и деформаций земной поверхности и ожидаемых сдвижений и деформаций в точках мульды сдвижений при подземном способе возведения объекта проводят в соответствии с ГОСТ [3].
· Общую продолжительность процесса сдвижения земной поверхности над производимой подземной выработкой и период опасных деформаций определяют в соответствии с ГОСТ [3].
· При мониторинге технического состояния зданий и сооружений, попадающих в зону влияния строительства или реконструкции объектов при подземном способе их возведения, проводят геодезическо-маркшейдерские работы, которые выполняются в процессе всего производственного цикла строительства объекта до затухания процесса деформирования как самого объекта, так и массива грунтовых пород в соответствии с согласованной в установленном порядке проектной документацией.
· Составлению программы наблюдений должны предшествовать оценка и прогноз геомеханического состояния породного массива в районе крупного строительства и зоне его влияния на объекты, расположенные на земной поверхности.
· Оценку геомеханического состояния до начала строительных работ проводят на основании геологических данных и инженерных изысканий. При этом особое внимание уделяют определению природного поля напряжений, характеристике тектонических нарушений, трещиноватости, слоистости, водообильности, карстообразованию и другим особенностям массива.
· Прогноз изменения геомеханического состояния породного массива под влиянием горных работ проводят как для типовых условий строительства и эксплуатации объекта, так и для аварийных ситуаций (разрушение крепи котлованов, прорыв в них плывунов, развитие карстовых образований, активизация древних оползней и т.д.). Прогноз состоит из определения ожидаемых параметров развития геомеханических процессов, основными из которых являются:
- размеры и местоположения зон сдвижения;
- значения максимальных сдвижений и деформаций;
- характер распределения деформаций в мульде сдвижения;
- общая продолжительность процесса сдвижения и периода опасных деформаций.
· Инструментальные наблюдения за сдвижением земной поверхности и расположенными на ней объектами проводят с целью получения информации об изменении геомеханического состояния породного массива, на основании которой можно своевременно принимать необходимые профилактические и защитные меры.
· Инструментальные наблюдения за сдвижением земной поверхности и сооружений проводят с помощью системы реперов, закладываемых в грунт и конструкции зданий и сооружений, а за сдвижением толщи горных пород – с помощью глубинных реперов, закладываемых в скважины. На застроенных территориях, для исключения возможности повреждений подземных коммуникаций, места закладки реперов должны согласовываться с органами местной исполнительной власти. Закладка реперов и начальные наблюдения на них должны проводиться до начала строительства. Порядок разбивки наблюдательной сети реперов представлен в ГОСТ [3].
· Одновременно с разбивкой наблюдательной сети реперов должны намечаться места для закладки трех исходных реперов, с помощью которых в дальнейшем будет определяться положение опорных реперов профильной линии по высоте и контролироваться их неподвижность.
· Для наблюдения за отдельными зданиями и сооружениями, попадающими в зону влияния нового строительства и природно-техногенных воздействий, закладываются стенные и грунтовые реперы. До начала наблюдений осуществляется обследование их технического состояния, регистрация динамических параметров, составление паспортов.
· Наблюдения за сдвижением земной поверхности, а также за деформациями зданий и сооружений, попадающих в зону влияния строительства подземного сооружения, заключаются в периодическом инструментальном определении положения реперов с фиксированием видимых нарушений, а также всех факторов, влияющих на значения и характер сдвижений и деформаций. Для зданий и сооружений также проводят измерения их динамических параметров.
· Наблюдения за деформациями оснований зданий и сооружений проводят по ГОСТ 24846. При наблюдениях за зданиями определяют неравномерность оседаний фундаментов, фиксируют трещины и другие повреждения конструкций, надежность узлов их опирания, наличие необходимых зазоров в швах и шарнирных опорах. Для промышленных зданий определяют также относительные горизонтальные перемещения отдельно стоящих фундаментов колонн, крены фундаментов технологического оборудования, а при наличии мостовых кранов – отклонения от проектного положения подкрановых путей: поперечный и продольный уклоны, изменения ширины колеи и приближение крана к строениям.
· Определение точности измерения вертикальных и горизонтальных деформаций проводят в зависимости от ожидаемого расчетного значения перемещения. При отсутствии данных по расчетным значениям деформаций оснований и фундаментов допускается устанавливать класс точности измерений вертикальных и горизонтальных перемещений:
I – для зданий и сооружений: уникальных, находящихся в эксплуатации более 50 лет, возводимых на скальных и полускальных грунтах;
II – для зданий и сооружений, возводимых на песчаных, глинистых и других сжимаемых грунтах;
III – для зданий и сооружений, возводимых на насыпных, просадочных, заторфованных и других сильно сжатых грунтах;
IV – для земляных сооружений.
· Предельные погрешности измерения крена в зависимости от высоты Н здания или сооружения не должны превышать следующих значений, мм:
- для гражданских зданий и сооружений 0,0001Н;
- для промышленных зданий и сооружений 0,0005Н;
- для фундаментов под машины и агрегаты 0,00001Н.
· Геодезическими методами и приборами по наблюдательным реперам измеряют вертикальные и горизонтальные перемещения земной поверхности и, при необходимости, дна котлована. При появлении трещин на земной поверхности в пределах приоткосной зоны организуют дополнительные систематические наблюдения за их развитием по протяженности, ширине и глубине.
· Одновременно с инструментальными наблюдениями на земной поверхности проводят маркшейдерские наблюдения непосредственно в подземном сооружении.
· По материалам измерений, вычислений и геолого-маркшейдерской документации составляют заключение (приложение V), содержащее необходимую информацию о состоянии зданий и сооружений, попадающих в зону влияния крупного нового строительства и природно-техногенных воздействий, изменении геомеханического состояния породного массива; степени опасности и скорости развития негативных процессов (если требуется). К заключению прикладывают документацию, подтверждающую сделанные в нем выводы.
6. Мониторинг технического состояния уникальных зданий и сооружений
ü Мониторинг технического состояния оснований и строительных конструкций уникальных зданий и сооружений проводят с целью обеспечения их безопасного функционирования, его результаты являются основой эксплуатационных работ на этих объектах. При мониторинге осуществляют контроль за процессами, протекающими в конструкциях объектов и грунте, для своевременного обнаружения на ранней стадии тенденции негативного изменения напряженно-деформированного состояния конструкций и оснований, которое может повлечь переход объекта в ограниченно работоспособное или аварийное состояние, а также получения необходимых данных для разработки мероприятий по устранению возникших негативных процессов.
ü Состав работ по мониторингу технического состояния оснований и строительных конструкций уникальных зданий и сооружений регламентируется индивидуальными программами проведения измерений и анализа состояния несущих конструкций в зависимости от технического решения здания или сооружения и его деформационного состояния.
ü В эксплуатируемом уникальном здании или сооружении, как правило, доступ к большей части несущих конструкций существенно ограничен, а работы по традиционному обследованию технического состояния конструкций трудоемки и дороги. Для таких объектов применяют специальные методы и технические средства раннего выявления и локализации мест изменения напряженно-деформированного состояния конструкций с последующим обследованием технического состояния выявленных опасных участков конструкций.
ü Для проведения контроля и ранней диагностики технического состояния оснований и строительных конструкций уникального здания или сооружения устанавливают автоматизированную стационарную систему мониторинга технического состояния (в соответствии с заранее разработанным проектом), которая должна обеспечивать в автоматизированном режиме выявление изменения напряженно-деформированного состояния конструкций с локализацией их опасных участков, определение уровня крена здания или сооружения, а в случае необходимости - и других параметров (деформации, давление и др.). Настройку автоматизированной стационарной системы мониторинга осуществляют, как правило, с использованием заранее разработанной математической модели для проведения комплексных инженерных расчетов по оценке возникновения и развития дефектов в строительных конструкциях, в том числе и в кризисных ситуациях.
ü Автоматизированная стационарная система мониторинга технического состояния оснований и строительных конструкций должна:
- проводить комплексную обработку результатов проводимых измерений;
- проводить анализ различных измеренных параметров строительных конструкций (динамических, деформационных, геодезических и др.) и сравнение с их предельными допустимыми значениями;
- предоставлять достаточную информацию для выявления на ранней стадии тенденции негативного изменения напряженно-деформированного состояния конструкций, которое может привести к переходу объекта в ограниченно работоспособное или аварийное состояние.
ü При выявлении мест изменения напряженно-деформированного состояния конструкций проводят обследование этих частей, и по его результатам делают выводы о техническом состоянии конструкций, причинах изменения их напряженно-деформированного состояния и необходимости принятия мер по восстановлению или усилению конструкций.
ü По результатам мониторинга технического состояния оснований и строительных конструкций уникальных зданий и сооружений выдают заключение, форма которого должна быть разработана по результатам проектирования автоматизированной стационарной системы мониторинга технического состояния оснований и строительных конструкций.
ü Мониторинг системы инженерно-технического обеспечения уникальных зданий и сооружений проводят с целью обеспечения ее безопасного функционирования. Его результаты являются основой работ по обеспечению безопасной эксплуатации этих объектов. При мониторинге осуществляется контроль за работоспособностью и результатами работы системы инженерно-технического обеспечения для своевременного обнаружения на ранней стадии негативных факторов, угрожающих безопасности уникальных зданий и сооружений.
ü Для проведения контроля и ранней диагностики технического состояния системы инженерно-технического обеспечения конкретного уникального здания (сооружения) устанавливают систему мониторинга инженерно-технического обеспечения (в соответствии с заранее разработанным проектом).
ü При мониторинге технического состояния уникальных зданий и сооружений по решению местных органов исполнительной власти, органов, уполномоченных на ведение государственного строительного надзора, или собственника объекта проводят мониторинг общей безопасности этих объектов (с комплексной оценкой риска) на случай возникновения аварийных воздействий природного и техногенного характера.
ü Требования к мониторингу общей безопасности объектов (с комплексной оценкой риска) на случай возникновения аварийных воздействий природного и техногенного характера представлены в ГОСТ [3].
7. Общие требования к проектированию и разработке автоматизированных стационарных систем мониторинга технического состояния зданий (сооружений)
Разработка автоматизированных стационарных систем мониторинга технического состояния оснований и строительных конструкций включает в себя следующие этапы:
1. на основе анализа возможных природно-техногенных воздействий, возможных неквалифицированных действий или отсутствия необходимых действий обслуживающего персонала, конструктивных особенностей объекта разрабатываются модели опасности для объекта;
2. на основе моделей опасности, знаний в области строительной механики (в том числе математического и физического моделирования) и работы строительных конструкций проводят анализ поведения конструкций объекта при реализации таких опасностей и составляют методику проведения мониторинга, а также перечень частей и элементов конструкций объекта, которые необходимо контролировать. Для каждой части и каждого элемента конструкций составляют перечень контролируемых параметров;
3. на основе известных или специально разрабатываемых способов и методов контроля параметров конструкций, аппаратуры и оборудования для контроля составляют технологию проведения мониторинга технического состояния упомянутых выше частей и элементов конструкций объекта;
4. на основе опыта обследования и анализа поведения строительных конструкций, учета скоростей развития негативных процессов в конструкциях и степени возможного допущения изменения их напряженно-деформированного состояния разрабатывают регламент проведения мониторинга.
На основе вышеописанных этапов разрабатывают проект автоматизированной стационарной системы мониторинга технического состояния оснований и строительных конструкций, в котором отражают следующие разделы:
- общие данные;
- основные сведения о конструктивных особенностях объекта;
- методика проведения мониторинга;
- технология проведения мониторинга;
- регламент проведения мониторинга;
- состав и технические характеристики комплекса мониторинга;
- формы заключений по этапу мониторинга;
- схемы размещения аппаратуры, оборудования, каналов связи системы мониторинга объекта;
- перечень автоматизированных или выполняемых автоматически процедур мониторинга;
- спецификация приборов и оборудования системы мониторинга.
В рамках проектирования системы мониторинга системы инженерно-технического обеспечения должны быть определены:
- перечень контролируемых параметров работы системы инженерно-технического обеспечения объекта;
- расчетные (проектные) значения контролируемых параметров работы системы инженерно-технического обеспечения объекта;
- состав и технические характеристики аппаратного и программного обеспечения системы мониторинга;
- месторасположение программно-аппаратного обеспечения системы мониторинга;
- алгоритм и критерии принятия управленческих решений по оценке работоспособности системы инженерно-технического обеспечения объекта, угрозы нарушения нормальной эксплуатации и передаче сообщений в единую систему оперативно-диспетчерского управления конкретного города;
- технические решения по взаимодействию системы мониторинга с системой инженерно-технического обеспечения объекта.
8. Требования к мониторингу общей безопасности объектов (с комплексной оценкой риска от аварийных воздействий природного и техногенного характера)
Мониторинг общей безопасности зданий и сооружений заключается в периодическом (на основе наблюдений и обследований) определении риска и скорости его роста до допустимого значения, устанавливаемого для конкретного объекта.
Под риском понимается вероятностная мера опасности или совокупности опасностей, устанавливаемая для объекта в виде возможных потерь за заданное время.
Оценка риска – это определение его значения количественным и качественным способами. Процесс последовательно выполняемых действий по идентификации и прогнозированию опасностей, оценке уязвимости объекта для этих опасностей и установлению возможных потерь объекта и его составляющих для всех случаев реализации опасностей с определенной интенсивностью, повторяемостью и длительностью воздействия за заданное время.
Для оценки риска анализируют следующие исходные данные:
- основные опасности, характерные для данного объекта и их различные сочетания;
- характер и условия эксплуатации объекта;
- характеристики, используемых на объекте веществ, материалов и продуктов;
- генеральный план, тип конструкции объекта, расположение прочих построек и объектов, способных повлиять на возникновение и развитие аварии;
- сведения об авариях и опасных инцидентах, происходивших ранее на объекте;
- зоны, представляющие повышенную опасность для возникновения взрывов при аварийных ситуациях;
- последствия аварий в виде степени повреждения объекта, и ожидаемого числа пострадавших;
- частоту, последствия аварий и приемлемый уровень риска;
- зоны индивидуального риска;
- возможности снижения риска и тяжести последствия аварий.
Уровень риска здания (сооружения) проверяют по формуле:
Р ≤ [Р],
где Р – риск нанесения зданию (сооружению) ущерба определенного уровня при опасном воздействии данной интенсивности за срок службы объекта;
[Р] – допустимый уровень риска (фоновый уровень для Российской Федерации), который принимается равным 5∙10-6.
Значение риска Р определяют по формуле:
Р = Р(Н) × Р(А/Н) × Р(Т/Н) × Р(D/Н) × С,
где Р(Н) – вероятность возникновения опасности;
Р(А/Н) и Р(Т/Н) – вероятности встречи опасности с рассматриваемым объектом в пространстве и времени соответственно;
Р(D/Н) – вероятность нанесения ущерба данного уровня;
С – относительный ущерб (отношение стоимости ущерба к стоимость объекта).
Риск ниже фонового уровня, равного 5∙10-6, является приемлемым (не требует мероприятий по его снижению); свыше 5∙10-5 – является недопустимым (требует срочной системы мер для его снижения); риск в интервале от 5∙10-6 до 5∙10-5 - для снижения уровня риска требуется система мер, полнота и сроки реализации которой устанавливаются с учетом экономических и социальных аспектов.
9. Геотехнический мониторинг зданий и сооружений (включая геодезический мониторинг)
Основной задачей геотехнического мониторинга является своевременное выявление и прогнозирование развития опасных геологических процессов, влияющих на безопасное состояние зданий и сооружений, в целях разработки и реализации мер по предупреждению и ликвидации чрезвычайных ситуаций. Система геотехнического мониторинга является одной из составных частей системы безопасности любых проектируемых зданий и сооружений высокого уровня ответственности и должна входить в состав стационарной станции мониторинга. Наблюдения должны осуществляться как в период строительства, так и в период последующей эксплуатации. Система геотехнического мониторинга должна быть построена в соответствии с блок-схемой, показанной на рисунке.
Геотехнический мониторинг подразделяется на 3 основных: мониторинг подземных вод и проявлений опасных геологических процессов; мониторинг напряженно-деформированного состояния грунтового массива на контакте с фундаментом и конструкций проектируемого здания; геодезический мониторинг существующих зданий и сооружений в зоне влияния проектируемого строительства.
Рис. 1. Блок-схема. Принцип построения системы геотехнического мониторинга.
Наблюдения за подземными водами включают измерения уровней, температуры, определение химического состава, режим водоотлива (в период строительства) и дренажа (в период эксплуатации). Наблюдения за проявлениями опасных геологических процессов включают мониторинг вертикальных и горизонтальных перемещений грунтов, вызванных опасными геологическими процессами (оползни, карстово-суффозионные процессы, суффозия, неравномерные деформации). Наблюдения за грунтовым массивом на контакте со зданием включают мониторинг напряженно-деформированного состояния на контакте фундамента с основанием, ограждающих конструкций с окружающим грунтовым массивом. Наблюдения за строящимися зданиями и сооружениями включают наблюдения за осадками зданий по настенным реперам, напряжениями в фундаменте и несущих конструкциях подземной части, креном, колебаниями зданий, регулярные визуальные обследования поверхностей фасадов и несущих конструкций, описание и замеры трещин. Наблюдения за внешними воздействиями на объект включают замеры ветровых нагрузок, вибрационных и сейсмических воздействий, температуры воздуха, атмосферного давления, атмосферных осадков.
Наблюдения и сбор данных мониторинга необходимо проводить с использованием автоматизированных средств наблюдения (датчиков) во всех случаях, когда частота замеров не менее чем 1 раз в квартал или на труднодоступных участках наблюдаемого объекта. Беспроводные технологии связи обеспечивают экономичность строительства, повсеместную доступность пунктов наблюдения и оперативность доступа к данным. Измерительные комплексы позволяют осуществлять мониторинг уровней и температур на обширных территориях. Сбор данных производится с использованием беспроводных технологий - по радиоканалу, либо по GSM-сетям. Аппаратура этих систем может длительное время работать автономно без замен источников питания и технического обслуживания.
Система сбора данных наблюдений предусматривает считывание наблюдаемых параметров с датчиков в автоматическом режиме и ручной ввод данных, получаемых при ручном замере параметров и получаемых из сторонних источников (например, атмосферных осадков и давления, температуры воздуха - с ближайшей станции Госкомгидромета). Система выдачи прогнозных данных построена на использовании математических моделей наблюдаемых процессов и явлений. Регулярно по данным мониторинга производится калибровка моделей и расчет прогнозного состояния наблюдаемых параметров объекта и среды. Для каждого измеряемого параметра устанавливается предельно допустимые изменения и возможные наиболее опасные сочетания изменений наблюдаемых параметров. При выявлении тенденции приближения какого-либо параметра к предельно допустимому значению система прогнозирования формирует сигнал, предупреждающий о возможном наступлении опасного явления через вычисленный на модели промежуток времени. Система выдачи рекомендаций включает в себя формирование последовательности действий, необходимых для предотвращения развития опасных процессов. Рекомендации должны формироваться системой мониторинга в автоматическом режиме, на основе правил заложенных в программе, и выдаваться оператору. Информация об ожидаемом негативном явлении, которое может вызвать чрезвычайную ситуацию, должна направляться в автоматическом режиме в Городской центр по предупреждению чрезвычайных ситуаций. Система геотехнического мониторинга должна разрабатываться с включением нескольких локальных подсистем, частично контролирующих и дублирующих друг друга.
Мониторинг напряженно-деформированного состояния (НДС) грунтового массива:
В соответствии с "Инструкцией по проектированию зданий и сооружений в районах г. Москвы с проявлением карстово-суффозионных процессов" при проектировании в районах с проявлением карстово-суффозионных процессов необходимо предусматривать в проектах оснащение зданий и сооружений автоматической системой сигнализации о возможных деформациях в связи с проявлениями карстово-суффозионных процессов.
Геодезический мониторинг окружающих зданий и сооружений:
Все здания, попадающие в зону влияния проектируемого котлована, должны быть обследованы и их мониторинг должен быть начат до начала строительных работ. С момента начала вскрытия котлована необходимо проводить постоянные наблюдения за состоянием "стены в грунте".
Мониторинг НДС в подземной части здания:
Прямые измерения характеристик напряженно-деформированного состояния на контактах "фундамент-основание", вертикальных контактах со "стеной в грунте" в несущих конструкциях в фундаментной плите, перекрытиях и несущих стенах (колоннах) подземной частях комплекса.
Мониторинг наземной части здания:
Измерение характеристик напряженно-деформированного состояния в перекрытиях и несущих стенах (колоннах) наземной частях комплекса, собственных колебаний, крена здания.
Мониторинг динамических воздействий:
Включает измерение вибраций, ветровых воздействий (направление и силы ветра), сейсмометрические наблюдения.
10. Организация мониторинга зданий и сооружений в городе Москва
Особую роль мониторинг технического состояния зданий и сооружений имеет для таких крупных мегаполисов, как Москва. Масштабное строительство надземных и подземных зданий и сооружений, особенно в стесненных условиях центра города, жизнедеятельность самого мегаполиса оказывают существенное влияние на уже построенные здания и сооружения, приводят к ухудшению строительных свойств грунтов, что в свою очередь создает дополнительные нагрузки в ранее построенных зданиях и увеличивает риск потери их несущей способности.
В настоящее время в г.Москва различные научно-исследовательские и учебные заведения, проектные организации и частные фирмы проводят несогласованные работы по обследованию технического состояния отдельных зданий и сооружений города, в основном, как правило, либо объектов уже находящихся в аварийном состоянии, либо при новом строительстве, реконструкциях, перестройках и др. Однако большое количество зданий и сооружений не охвачено вообще никаким контролем, хотя жизнедеятельность города динамично приводит как к ухудшению свойств грунтов, так и к негативным воздействиям силового и не силового характера на наземные конструкции зданий и сооружений. Все это в условиях исчерпания нормативных сроков эксплуатации большого количества объектов не допустимо и требует системно организованных наблюдений, т.е. необходима служба мониторинга деформационного состояния зданий и сооружений существующей застройки города.
Московская система мониторинга деформационного состояния сооружений (МСМС) должна создаваться как общегородская система, предназначенная для целенаправленного сбора, накопления, обобщения, хранения и многоаспектного использования информации о деформационном состоянии (остаточном ресурсе) сооружений различного назначения, включая жилые и общественные здания, промышленные сооружения, исторические памятники и т.п. Ее информация необходима для многоаспектного информационного обеспечения процесса принятия долгосрочных и оперативных решений административно-управленческого и проектно-строительного характера, связанных с использованием информации об остаточных ресурсах сооружений города и опасности их разрушения.
Создание такой системы определяется необходимостью получения новых и эффективного использования существующих экспертных заключений о техническом состоянии, результатов обследования и испытаний, мониторинга технического состояния сооружений города для информационного обслуживания компетентных органов города, выполняющих решения задачи обеспечения безопасности сооружений существующей застройки г. Москвы при изменении инженерно-геологических свойств грунтов, изменении природно-техногенных и возникновении новых техногенных воздействий, изменении несущей способности сооружений во времени, а также из-за изменения условий эксплуатации, реконструкции, перестроек и т.п.
МСМС города как информационная система о техническом состоянии его сооружений кроме осуществления планового мониторинга должна аккумулировать вновь получаемую различными проектными и научными организациями информацию (в результате экспертиз, обследований, испытаний и научно-исследовательских работ) для повышения надежности прогнозируемого состояния сооружений и обеспечения их безопасности. В своей деятельности МСМС должна использовать данные других организаций и служб города, связанных с проблемами изменения условий силового и не силового воздействия на сооружения.
Функциональными задачами МСМС должны быть:
Ø Организация планового системного мониторинга технического состояния зданий и сооружений города.
Ø Организация, методическое руководство и выполнение работ по накоплению, хранению, защите и представлению пользователям информационных ресурсов по мониторингу технического состояния зданий и сооружений города.
Ø Информационное обслуживание процесса долгосрочного и оперативного решения административно-управленческих и строительных задач общегородского уровня по обеспечению безопасности зданий и сооружений города.
Ø Координация работ по созданию, эксплуатации и развитию МСМС, интеграция ее информационной базы в общегородскую информационную систему.
Ø Выполнение научно-исследовательских и проектных работ, связанных с развитием и эксплуатацией МСМС.
Ø Разработка и внедрение системы стандартизации и сертификации в организациях участвующих в МСМС, а также использующих ее информацию.
Ø Организация разработки и разработка технологий мониторинга технического состояния зданий и сооружений, прикладных информационных технологий, технических средств наблюдений, согласования систем связи с другими смежными информационными системами.
Ø Обеспечение сохранности государственной и коммерческой тайны, содержащейся в базах данных МСМС, защита информации МСМС от несанкционированного доступа, разрушения, организация регламентного использования информационных ресурсов МСМС.
Ø Обучение обслуживающего персонала и пользователей МСМС.
Ø Посредническая и рекламно-издательская деятельность в области предоставления услуг по использованию информации МСМС при условии соблюдения прав собственника информации.
Особое значение такая система имеет для мониторинга технического состояния уникальных, в том числе высотных, и экспериментальных зданий и сооружений. Важнейшей проблемой безопасной эксплуатации таких зданий является контроль напряженно-деформированного состояния их несущих конструкций.
В последнее время, особенно после трагедии c комплексом «Трансвааль-Парк», появилось много предложений по использованию для контроля технического состояния несущих конструкций зданий и сооружений автоматических станций, работающих непрерывно (круглосуточно) в режиме реального времени. Однако контроль технического состояния зданий в настоящее время нельзя осуществить автоматически, так как это состояние в соответствии с СП-13-102-2003 и разработанными, находящимися на утверждении МГСН 2.1004, определяется на основе поверочных расчетов с уточненными по результатам обследования расчетной схемой объекта и реальными прочностными характеристиками материала конструкций, что пока не поддается автоматизации. Контроль отдельных параметров ограниченного числа несущих элементов, часто мало говорит о реальном техническом состоянии здания. Режим же круглосуточного мониторинга вообще малоэффективен, а потому и нецелесообразен. Действительно обрушение сооружений может происходить по двум схемам: либо с постепенным накоплением напряжений и деформаций и последующим обрушением несущих конструкций, либо быстротечно (прогрессирующее обрушение) при возможно даже кратковременном, но существенном перегрузе важного несущего элемента конструкций, при разрушении которого и возможно последующее прогрессирующее обрушение.
При первом способе обрушения, как показывает многолетний опыт обследований и мониторинга зданий и сооружений, нет необходимости вести непрерывный контроль деформаций конструкций, достаточно его вести регулярно периодически, например, один раз в год. Защитой от второго способа обрушения в настоящее время может быть только надежный расчет несущих элементов конструкций и соответствующие конструктивные мероприятия, обеспечивающие недопустимость прогрессирующего обрушения, поскольку при такой схеме обрушения не могут помочь какие-либо системы контроля деформаций строительных конструкций, так как если процесс начался, то в силу его быстротечности равносильной взрыву даже предварительное обнаружение не дает возможности предпринять какие-либо действия для его предотвращения или спасения людей и оборудования.
В этой связи возникает необходимость ранней диагностики изменений напряженно-деформированного состояния конструкций и локализации мест такого изменения. Разработана методика диагностики изменения напряженно-деформированного состояния конструкций зданий и сооружений, основанная на их динамическом зондировании, и позволяющая достаточно недорого на ранней стадии выявлять такие изменения, своевременно проводить обследование технического состояния конструкций и предпринимать превентивные меры по не допущению аварийных ситуаций.
11. Примеры проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий
Высотные здания (более 75 м) становятся особенностью современного силуэта крупного города. Обеспечение безопасности при их строительстве и эксплуатации требует постоянного контроля состояния (мониторинга) объекта. Вслед за промышленными и специальными сооружениями, такие работы в настоящее время предпринимаются для зданий гражданского назначения. Учитывая, что высотное здание является очень сложным инженерным сооружением, необходимо контролировать техническое состояние и функционирование разнообразных компонентов - инженерных сетей, конструкций в целом и отдельных узлов, поведения грунтового массива и пр. Все эти элементы взаимосвязаны и составляют единую систему мониторинга здания, объединяющую набор отдельных технических решений. Важными вопросами создания системы являются проблемы подбора оборудования и методик, их объединения для мониторинга состояний конструкций надземной и подземной частей высотного здания и грунтов основания.
Существенно, что требования проведения инструментального мониторинга содержатся в Московских Городских Строительных Нормах (МГСН-4.19-2005), которыми руководствуются не только при возведении высотных зданий и многофункциональных комплексов в Москве, но и в других городах России (например, в г. Казани). Нормативы США и Европы предусматривают наблюдение за состоянием конструкций и грунтов основания, но не содержат конкретных указания по методам проведения инструментального мониторинга. Благодаря развитию методик и средств измерений, цифровой обработки сигналов, в настоящее время для мониторинга существует широкий набор возможностей выбора инструментов и методик. Тут важно для конкретного объекта и заданных технико-экономических показателей подобрать оптимальный вариант схемы мониторинга, наиболее полно контролирующих его состояние. Ниже представлены примеры создания различных вариантов схем на основании опыта мониторинга высотных зданий в России (с 2003 г.) и обобщения практики строительства за рубежом.
Инструментальный мониторинг конструкций и оснований зданий опирается, в основном, на четыре класса методик:
ü геодезические измерения; выполняются как с помощью традиционной нивелировки, так и с использованием современных цифровых датчиков, спутниковых GPS-технологий, возможно лазерное сканирование объекта. Данные методики позволяют определять перемещение объекта (здания или отдельных его частей) в пространстве, в том числе, измерять осадки и крены. Получаемые данные соответствуют состоянию на момент измерений, т.е. при достаточно редких по времени замерах методики не дают подробной динамики поведения объекта;
ü инженерно-геологические наблюдения состояния грунтового массива в основании и в окрестности здания. Существует набор схем как разной трудоемкости и стоимости, так и разной разрешающей способности и информативности - от измерений в отдельных скважинах до межскважинного просвечивания (вплоть до получения 3-мерного томографического изображения). В зависимости от выбора датчиков, можно вести мониторинг дифференциальных (послойных) или суммарных осадок грунтов основания, уровня воды, порового давления в породах (параметра, используемого в расчетах за рубежом). Помимо скважин, важную информацию получают при размещении под фундаментной плитой сети датчиков давления на грунт, в сваях - вертикальных нагрузок. Наблюдения могут вестись непрерывно или достаточно часто по времени, т.е. есть возможность следить за особенностями динамики объекта;
ü измерения нагрузок и деформаций в конструкциях фундамента и надземной части. Тут также существует набор инструментов, ниже рассмотрены схемы с использованием вибрационных датчиков напряжений, монтируемых по 1-, 2- и 3-м пространственным координатам X, Y, Z в точке и размещаемых в фундаментной плите, а также в стенах, пилонах и колонах здания. Наблюдения могут вестись в автоматическом режиме и, в том числе, непрерывно;
ü сейсмометрические методики; могут выполняться различными измерительными устройствами - деформографами, наклономерами и сейсмометрами (велосиметрами, акселерометрами). Схемы наблюдений разнообразны, включают варианты возбуждения колебаний здания как искусственными (удары, вибраторы), так и естественными (ветер, микросейсмы) источниками. Сейсмометрические измерения дают "мгновенную" картину состояния объекта, наблюдая которую во времени можно получить разнообразную информацию об особенностях динамики сооружения.
Следует отметить, что если первые три типа наблюдений дают в основном "прямую" информацию (величины осадок, нагрузок и пр.), то регистрация колебаний требует как достаточно сложной предварительной обработки, так и создания моделей динамики сооружения. Особенностью сейсмометрических методик является то, что схемы наблюдений могут быть достаточно простыми (вплоть до одной точки). Кроме того, они дают возможность контролировать не только величины ускорений, но и, как показано ниже, позволяют судить о совместной работе здания и грунтов основания, в том числе выявить неизвестные ранее явления.
Комплексирование первых трех типов мониторинга с сейсмометрическими наблюдениями позволяет связать между собой все получаемые данные. На рис. 2 представлен пример схемы мониторинга, разработанной для высотного комплекса "Континенталь" с плитным фундаментом в Москве на пр. Маршала Жукова. Схема мониторинга включает инструментальную (аппаратурную) часть и программное обеспечение, собирающее данные, их обрабатывающее и оценивающее состояние здания.
Рис. 2. Блок-схема инструментального мониторинга высотного комплекса “Континенталь” в Москве.
На рис. 3 показаны примеры инструментального оснащения схем мониторинга для плитного фундамента (Москва), а также для плитно-свайного (Казань). Инструментальное оснащение мониторинга может варьироваться, но основными элементами являются:
- скважинные измерения осадок в грунтах, при малом числе скважин - дополняются измерениями наклонов;
- измерения порового давления и вариации уровня грунтовых вод;
- определения нагрузок на грунт и напряжений в фундаментной плите и сваях;
- измерение напряжений в конструкциях: стенах, пилонах и колонах;
- наблюдение колебаний здания.
Рассмотрим принципы проектирования размещения оборудования. Определяющим для подбора конкретных измерительных средств является объемно-планировочное и конструктивное решения объекта, результаты инженерно-геологических изысканий. Основу геометрии размещения составляют результаты расчетов статики и динамики сооружения, важную роль играют результаты аэродинамических испытаний макетов. Проиллюстрируем конкретными примерами.
Рис. 3. Схема расстановки оборудования инструментального мониторинга высотных зданий в Москве (А) и в Казани (В): 1 - геодезические измерения осадок, 2 – датчики давления на грунт, 3 – скважинные измерения осадок (послойных и суммарных), 4 - датчики порового давления, 5 – тензодатчики, 6 - сейсмометрические измерения колебаний, 7 – двухкоординатный инклинометр (измерение крена).
На рис. 4 и 5 представлены результаты расчетов осадок, нагрузок и моментов для коробчатой фундаментной плиты высотного корпуса жилого комплекса "Континенталь" в Москве. Сопоставление расчетов показывает, что зоне наибольших осадок в центральной части плана соответствует область растяжений, что в значительной мере определяет конфигурацию расстановки датчиков разных типов. На плане показаны места установки скважинных датчиков осадок (суммарных и послойных), порового давления, а также датчиков давления на грунт и напряжений в плите (по 3 направлениям X, Y, Z). Видно, что скважины для измерения осадок (5 шт.) позволяют контролировать состояние объекта по основным осям плана, причем для зон разной нагруженности. Достаточно "спокойная" инженерно-геологическая ситуация и устойчивость здания по соотношению ширина-высота позволили здесь "сэкономить" на датчиках крена. Датчики давления на грунт и напряжений в плите образуют своеобразные поля, геометрия их расположения определяется расчетными полями осадок и нагрузок, причем контролируются участки разного нагружения и осадки.
Рис. 4. Проектирование схемы мониторинга фундаментной плиты высотного здания "Континенталь" в Москве - расположение датчиков на результатах расчетов: вверху - осадок, внизу - вертикальной нагрузки; датчики: 1- 3D тензометры, 2 - давления на грунт, скважинные измерения: 3 - порового давления, 4 - послойных и 5 - суммарных осадок.
Таким образом, данная схема позволяет не только вести мониторинг объекта, но и сопоставлять расчетные и реальные величины, получаемые на натурном объекте. Приведенные примеры и опыт мониторинга комбинированных плитно-свайных фундаментов в Германии демонстрируют, что применение схем мониторинга грунтового массива и фундаментов позволяет не только следить за состоянием здания, но и на основании анализа натурных и расчетных данных применять в последующих зданиях более эффективные конструктивные решения.
Рис. 5. Проектирование схемы мониторинга фундаментной плиты высотного здания "Континенталь" в Москве - расположение датчиков на результатах расчетов: вверху - горизонтальной (по оси X) нагрузки, внизу - моментов относительно оси X; датчики - те же, что на рис. 4.
Датчики в элементах конструкций здания. В зарубежной практике принято устанавливать поля 1-мерных датчиков напряжений по системе взаимно-перпендикулярных линий. Результаты измерений легко визуализировать в поля деформаций. При более экономной схеме в ключевых точках монтируются 3D-датчики по осям X, Y, Z. Датчики крепятся на арматуру в процессе строительства. Сигнальные кабели от датчиков сводятся в комнату мониторинга, откуда идет автоматический опрос показаний (рис. 1)
На рис. 6 на примере результатов расчетов сил и моментов для колонн стилобата высотного жилого комплекса "Континенталь" в Москве показано размещение 3D-датчиков. Контролируется напряженно-деформированное состояние участков наибольших нагрузок и моментов. На данном объекте мониторинг напряжений ведется в фундаментной плите, в стенах и колонах стилобата и на уровне 1-го этажа. Особое внимание уделяется пилонам и колонам. Существенно, что датчики расположены таким образом, что образуют объемную схему мониторинга в нижней части здания.
Сейсмометрический мониторинг. Для возможности обследования здания в целом используются датчики в диапазоне частот от 0,2 Гц и выше, причем низкочастотный край диапазона ориентирован на выявление изменений в состоянии конструкций и может применяться для оценки физических характеристик грунтов оснований в условиях естественного залегания (модулей упругости, параметров нелинейности, флюидонасыщенности и пр.).
Остановимся на основных способах сейсмометрического мониторинга зданий. Для отслеживания изменений необходимо повторение наблюдений при сравнении регистрируемых волновых полей. Исходя из способов получения волновых полей и схем обработки, можно выделить три группы методик мониторинга конструкций зданий:
Ø с возбуждением колебаний зданий искусственными источниками - ударами разной силы по зданию или в не его. Основные недостатки - требуется создание идентичного воздействующего сигнала для накопления отклика и подавление микросейсм; доступны лишь отдельные части здания, т.к. достаточно сложно возбудить колебания ниже 1 Гц - частоты, характерные для основного тона собственных колебаний высотных зданий.
Ø при воздействии на здание микросейсм и их регистрации на коротких профилях в здании с последующей корреляционной обработкой. Например, при анализе функции когерентности каналов выявляют собственные колебания зданий, проводится построение амплитудных и фазовых распределений по объему сооружения. В это способе возможно, при условии подходящего соотношения частот, ошибочное включение в обработку колебаний, наведенных на здание от других объектов.
Ø источником, возбуждающим собственные колебания здания, являются постоянно присутствующие пульсации атмосферного давления, регистрируют одновременно пульсации давления (микробарографом) и микросейсмы по 3 компонентам (X, Y, Z), наблюдения могут вестись в одной точке, в том числе вне здания. При обработке выделяют тонкие линии в спектре, анализируют временной ход их амплитуд в сравнении с ходом вариаций атмосферного давления, что позволяет отсеять наведенные колебания от соседних сооружений. Мониторинг по этому способу может вестись в одной точке, обследования целостности здания - в нескольких ключевых точках.
Последний способ представляется наиболее технологичным и экономичным. Кроме того, модификация этой методики может применяться для изучения свойств оснований сооружений, а также для задач сейсмического просвечивания. В настоящее время по способу оборудована станция стационарного мониторинга высотного жилого здания "Эдельвейс" в Москве (ул. Давыдковская), измерения проводятся с интервалом в 10 суток в течение около 3 лет.
Рис. 6. Пример размещение 3D-тензометров на схеме результатов расчетов сил и моментов для колонн стилобата высотного жилого комплекса "Континенталь" в Москве: 1- датчики в колоннах, 2 - в стенах.
Опыт мониторинга высотного жилого дома "Эдельвейс" показывает, что схема наблюдений, использующая для возбуждения колебаний здания ветровые пульсации, позволяет определить собственные частоты и следить за изменением их во времени. На рис. 7 показано изменение во времени (временной ход) значений собственных частот основного тона для высотного 44-эт. жилого дома "Эдельвейс" (0,54 и 0,72 Гц в направлениях разных осей плана X, Y). После ввода в эксплуатацию наблюдается тенденция к систематическому уменьшению значений - за год на 0,015 Гц, что связано, по-видимому, с "загрузкой" здания;
Рис. 7. Изменение во времени собственных частот основного тона колебаний здания "Эдельвейс" в горизонтальной плоскости (по осям X, Y).
Построение в разных точках траекторий движения собственных колебаний, на этой базе - получение картины деформаций. На рис. 8 на фундаментной плите наиболее выразительны траектории в вертикальной плоскости поперек корпуса - видны различия траекторий в противоположных точках плана, свидетельствующих о деформировании плиты. Оценка значений дает добавочные напряжения при нормативном ветре 0,5% от расчетных статических, при сильном ветре - до 2%. Существенно, что это многоцикловое динамическое воздействие, которое следует иметь в виду при армировании;
Выявление нарушений в конструктивных связях. В высотном здании присутствует деформационный шов, на рис. 8 видны различия в траекториях по разные стороны деформационного шва - в горизонтальной плоскости амплитуды колебаний поперек корпуса совпадают, а вдоль - для крайней точки амплитуда больше, чем для центральной. Данные позволяют оценить расхождение блоков здания по шву;
Наблюдением особенностей совместной работы здания с грунтами основания, в том числе появление так называемой присоединенной массы грунта к фундаменту после возведения здания. Эффект проявляется в том, что в период замерзания и оттаивания грунта появляется еще один пик в спектре - для здания "Эдельвейс" на частоте 0,18 Гц. Явление создания присоединенной массы к колеблющемуся штампу на грунте хорошо известен в вибрационной сейсморазведке, аналогичный эффект возможен тут как результат постоянных слабых колебаний здания при нежестком закреплении.
Рис. 8. Траектории движения точек при ветровых колебаниях высотного здания в г. Москва: на 30 этаже и на фундаментной плите (положение точек показано на плане).
Существенно, что этот эффект отмечен нами для двух обследованных зданий в Москве - "Эдельвейс" и высотного главного корпуса МГУ. В качестве опорных для МГУ использовались результаты сейсмометрических работ, выполненных И.Л. Корчинским в 1950-х гг.
Важным вопросом организации сейсмометрического мониторинга является подбор датчиков и их размещение. Основные параметры для выбора типа датчика - частотный диапазон и чувствительность. Несомненно, что сейсмометр должен регистрировать собственные колебания основного тона и нескольких более высокий гармоник. Для высотных зданий основной тон лежит в диапазоне менее 1 Гц (обычно 0,2-0,8 Гц), частоты выше 25-30 Гц регистрировать нецелесообразно (полезный сигнал маскируется промышленными помехами). Таким образом, мониторинг должен вестись датчиками, ориентированными на сейсмологические наблюдения. В настоящее время нами опробованы различные типы датчиков:
- велосиметры - российские С-5-С, СМ-3, КМВ (конструкции ИФЗ РАН), и зарубежные - фирмы Guralp CMG-3ESPC (трехкомпонентный широкополосный с частотным диапазоном от 100 сек (0,01Гц) до 50 Гц и чувствительностью 2*10 000 В/м/с);
- акселерометры - конструкции ИФЗ РАН и фирмы Guralp CMG-5Т (трехкомпонентный форс-балансный).
Проведены испытания, в том числе с установкой на одном постаменте. По результатам испытаний для обследований зданий и сооружений приняты датчики фирмы Guralp CMG-5Т или отечественные СМ-3 (трехкомпонентная расстановка). Для стационарного мониторинга в соответствии с требованиями метрологии приняты датчики фирмы Guralp CMG-3ESPC и CMG-5Т, укомплектованные датчиками GPS для наблюдений в едином мировом времени и с автономной регистрацией на флеш-памяти устройством GSR-24 (фирмы GeoSIG). Такой подход позволяет оборудовать систему мониторинга не только датчиками по международному стандарту, но и в случае чрезвычайных ситуаций иметь сейсмический «черный ящик», содержащий информацию о происшествии. Размещение датчиков по зданию определяется его архитектурно-планировочным решением. Тут также существенную роль играют результаты аэродинамических испытаний макетов. На рис. 9 приведена схема статических (средних) ветровых нагрузок на фасад высотного корпуса на пр. Маршала Жукова в Москве. Видна явная неравномерность нагрузки, что создает предпосылку для дополнительных деформаций объекта. Для таких сложных зданий целесообразно устанавливать 4 датчика - по 2 на верхних этажах и на фундаментной плите, причем располагать их в противоположных концах плана для возможности выявления крутильных колебаний. Существенно, что датчики должны вести наблюдения в едином времени, что возможно путем синхронизации их по GPS-временным маркам. Для зданий более простой формы количество датчиков может быть уменьшено, вплоть до 1 шт., с размещением на верхнем этаже.
Рис. 9. Нагрузки на фасад высотного здания "Континенталь" в Москве по результатам аэродинамических испытаний макета (слева - наветренный, справа - подветренный фасады)
Опыт проектирования схем мониторинга, их монтажа и проведения наблюдений показывает эффективность использования в едином комплексе цифровых измерительных устройств различных типов, дающих сведения о состоянии конструкций и грунтов основания зданий. Инструменты мониторинга объединяются в единую схему с помощью программного комплекса, управляющего сбором, обработкой и анализом информации. Подбор и размещение датчиков определяется путем анализа материалов инженерно-геологических изысканий, расчетов статики и динамики сооружения, результатов аэродинамических испытаний макетов высотных зданий.
мониторинг проектирование здание высотный
Литература
1) Айме К.А. Мониторинг зданий и котлованов, ч. 2 //Строительные материалы, оборудование, технологии века, № 11, 2005, С. 37-39.
2) Временные нормы и правила проектирования многофункциональных высотных зданий и зданий-комплексов в г. Москве МГСН 4.19-2005. М., 2005. - 129 с.
3) ГОСТ Р 53778-2010 «Здания и сооружения. Правила обследования и мониторинга технического состояния».
4) Корчинский И.Л. Колебания высотных зданий, Науч. сообщ. вып. 11, ЦНИПС, М., 1953, 44 с.
5) Селезнев В.С., Еманов А.Ф., Барышев В.Г., Кузьменко А.П. Способ определения физического состояния зданий и сооружений. Патент РФ 2140625 С1, 17.02.98, Бюлл. № 30, 27.10.99.
6) Технический регламент о безопасности зданий и сооружений, введенный в действие Федеральным законом Российской Федерации от 30.12.2009 года N 384 – ФЗ
7) Шахраманьян М.А., Нигметов Г.М. и др. Способ динамических испытаний зданий. Патент РФ № 2141635, G01M7/00, 1999.
Интернет-источники:
1) www.dom6.ru
2) www. geodin.ru
3) http://www.kyowa.ru/products/civil/index.php
4) http://www.ingil.ru/scientific-activities/16-monitoring.php
Приложения
Приложение I
Форма заключения (текущего) по этапу общего мониторинга технического состояния зданий (сооружений)
Заключение составляется головной организацией по результатам этапа общего мониторинга технического состояния зданий (сооружений).
заключение по этапу общего мониторинга технического состояния зданий (сооружений) |
||
1 | Перечень адресов объектов | |
2 | Номер этапа мониторинга | |
3 | Время проведения этапа мониторинга | |
4 | Головная организация этапа мониторинга | |
5 | Перечень организаций, проводивших этап мониторинга технического состояния объектов, с указанием, какой объект обследовался и какой организацией. | |
6 | Перечень объектов, категория технического состояния которых соответствует ограниченно работоспособному состоянию. | |
7 | Перечень объектов, категория технического состояния которых соответствует аварийному состоянию. | |
8 | Общая оценка ситуации | |
9 | Информация, требующая экстренного решения возникших проблем безопасности |
Приложение II
Форма паспорта здания (сооружения), заполняемого при общем мониторинге зданий (сооружений)
Паспорт здания (сооружения) |
||
1 | Адрес объекта | |
2 | Время составления паспорта | |
3 | Организация, составившая паспорт | |
4 | Назначение объекта | |
5 | Тип проекта объекта | |
6 | Число этажей объекта | |
7 | Наименование собственника объекта | |
8 | Адрес собственника объекта | |
9 | Степень ответственности объекта | |
10 | Год ввода объекта в эксплуатацию | |
11 | Конструктивный тип объекта | |
12 | Форма объекта в плане | |
13 | Категория деформационного состояния объекта | |
14 | Тип воздействия наиболее опасного для объекта | |
15 | Период основного тона собственных колебаний вдоль большой оси | |
16 | Период основного тона собственных колебаний вдоль малой оси | |
17 | Период основного тона собственных колебаний вдоль вертикальной оси | |
18 | Логарифмический декремент основного тона собственных колебаний вдоль большой оси | |
19 | Логарифмический декремент основного тона собственных колебаний вдоль малой оси | |
20 | Логарифмический декремент основного тона собственных колебаний вдоль вертикальной оси | |
21 | Значение крена объекта вдоль большой оси | |
22 | Значение крена объекта вдоль малой оси | |
23 | Фотографии объекта |
Приложение III
Форма заключения (текущего) по этапу мониторинга технического состояния объекта при общем мониторинге зданий (сооружений)
заключение по этапу мониторинга технического состояния объекта при общем мониторинге технического состояния зданий и сооружений |
||
1 | Адрес объекта | |
2 | Номер этапа мониторинга | |
3 | Время проведения этапа мониторинга | |
4 | Организация, проводившая этап мониторинга | |
5 | Предыдущее значение крена объекта вдоль большой оси | |
6 | Текущее значение крена объекта вдоль большой оси | |
7 | Предыдущее значение крена объекта вдоль малой оси | |
8 | Текущее значение крена объекта вдоль малой оси | |
9 | Предыдущее значение периода основного тона собственных колебаний вдоль большой оси | |
10 | Текущее значение периода основного тона собственных колебаний вдоль большой оси | |
11 | Предыдущее значение периода основного тона собственных колебаний вдоль малой оси | |
12 | Текущее значение периода основного тона собственных колебаний вдоль малой оси | |
13 | Предыдущее значение периода основного тона собственных колебаний вдоль вертикальной оси | |
14 | Текущее значение периода основного тона собственных колебаний вдоль вертикальной оси | |
15 | Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси | |
16 | Текущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси | |
17 | Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль малой оси | |
18 | Текущее значение логарифмического декремента основного тона собственных колебаний вдоль малой оси | |
19 | Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль вертикальной оси | |
20 | Текущее значение логарифмического декремента основного тона собственных колебаний вдоль вертикальной оси | |
21 | Установленная категория технического состояния объекта | |
22 | Собственник объекта |
Приложение IV
Форма заключения (текущего) по мониторингу технического состояния здания, находящегося в ограниченно работоспособном или аварийном состоянии
заключение по этапу мониторинга технического состояния объекта |
||
1 | Адрес объекта | |
2 | Номер этапа мониторинга | |
3 | Время проведения этапа мониторинга | |
4 | Организация, проводившая этап мониторинга | |
5 | Наличие изменения ранее выявленных дефектов и повреждений | |
6 | Появление новых дефектов и повреждений | |
7 | Предыдущее значение крена объекта вдоль большой оси | |
8 | Текущее значение крена объекта вдоль большой оси | |
9 | Предыдущее значение крена объекта вдоль малой оси | |
10 | Текущее значение крена объекта вдоль малой оси | |
11 | Предыдущее значение периода основного тона собственных колебаний вдоль большой оси | |
12 | Текущее значение периода основного тона собственных колебаний вдоль большой оси | |
13 | Предыдущее значение периода основного тона собственных колебаний вдоль малой оси | |
14 | Текущее значение периода основного тона собственных колебаний вдоль малой оси | |
15 | Предыдущее значение периода основного тона собственных колебаний вдоль вертикальной оси | |
16 | Текущее значение периода основного тона собственных колебаний вдоль вертикальной оси | |
17 | Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси | |
18 | Текущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси | |
19 | Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль малой оси | |
20 | Текущее значение логарифмического декремента основного тона собственных колебаний вдоль малой оси | |
21 | Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль вертикальной оси | |
22 | Текущее значение логарифмического декремента основного тона собственных колебаний вдоль вертикальной оси | |
23 | Установленная категория технического состояния объекта | |
24 | Собственник объекта |
Приложение V
Форма заключения (текущего) по мониторингу технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и природно-техногенных воздействий
Составляется головной организацией по результатам этапа мониторинга технического состояния зданий и сооружений, попадающих в зону влияния нового строительства и природно-техногенных воздействий.
заключение по этапу мониторинга технического состояния объектов, попадающих в зону влияния нового строительства и природно-техногенных воздействий |
||
1 | Информация, определяющая местонахождение и тип воздействия (эпицентр природно-техногенного воздействия, адрес стройки) | |
2 | Номер этапа мониторинга | |
3 | Время проведения этапа мониторинга | |
4 | Радиус зоны влияния воздействия | |
5 | Перечень объектов, попадающих в зону влияния воздействия | |
6 | Головная организация этапа мониторинга | |
7 | Перечень организаций, проводивших этап мониторинга технического состояния объектов, с указанием, какой объект обследовался и какой организацией. | |
8 | Перечень объектов, категория технического состояния которых соответствует ограниченно работоспособному состоянию. | |
9 | Перечень объектов, категория технического состояния которых соответствует аварийному состоянию. | |
10 | Общая оценка ситуации | |
11 | Информация, требующая экстренного решения возникших проблем безопасности |
Приложение VI
Приборы для мониторинга зданий и сооружений
ü Датчики напряжений серии BR-BT позволяют непосредственно измерять напряжения в бетоне, а не получать значения путём определения деформации. С помощью функции измерения температуры можно одновременно измерять напряжения и температуру.
ü Датчики грунтового давления серии GTI-E201-S созданы для спуска в скважину, проделанную в точке измерения. Это не только избавляет от необходимости проведения широкомасштабных земляных, восстановительных и насыпных работ, но и позволяет выполнять измерения, не нарушая структуры места измерения.
ü Тензометрические датчики серии BS-25AT/BS-25BT предназначены для измерения деформации, возникающей внутри бетона со сравнительно большой долей заполнителей. Так как данные датчики имеют функцию измерения температуры, с их помощью можно одновременно измерять температуру и деформацию.
ü Датчики напряжения серии BFD-A-TS созданы для измерения напряжения арматурных стержней, чьи номинальные диаметры больше диаметров при измерениях датчиками серии BF-CT. Датчики серии BFD-A-TS также монтируются путём приваривания обоих концов к арматурному стержню. Существует несколько моделей датчиков на выбор в соответствии с диаметром арматурных стержней. Каждая модель имеет функцию измерения температуры для одновременного измерения напряжения и температуры.
ü Датчики серии BT-100B встраиваются в бетон или устанавливаются в грунте и предназначены для измерения распределения температуры конструкций или измерения температуры для компенсации коэффициента линейного расширения бетона.
ü Комбинированные датчики серии BJ-AT вставляются на стыке примыкающих друг к другу бетонных блоков и предназначены для измерения зазора между блоками. Функция измерения температуры позволяет выполнять одновременное измерение смещения и температуры. Кроме того, для измерения трещин в бетоне или скалистом основании благодаря специализированному приёмнику можно заделывать датчики в бетон, а монтажные ножки или крепления позволяют устанавливать датчик на поверхности.
ü Датчики смещения серий BJB-C-S, BJB-D-S и BJB-E-S используются для измерения смещения скального основания и осадки грунта. Доступны различные модели на выбор в соответствии с диапазоном измерения, размерами и условиями проведения исследований.
ü Датчики серии BJC-AT созданы для измерения трещин внутри бетона, в который они заделаны. С помощью комбинированного датчика серии BJ-AT проводится измерение трещин, образующиеся между комбинированным датчиком и наконечником соединенного с ним удлиняющего стержня.
ü Датчики серии BEM-A - датчики подземного грунтового давления с диаметром чувствительной поверхности 80мм. Конструкция из нержавеющей стали позволяет применять датчики на море.
ü Датчики линейного перемещения серии DT-A имеют в основе тезометрический принцип преобразования и предназначены для долговременных стабильных измерений. Позволяют проводить измерения относительных и абсолютных перемещений от нулевой точки.
Оценка бизнеса | |
РАЗДЕЛ I. ОСНОВНЫЕ ПОНЯТИЯ ОЦЕНКИ БИЗНЕСА Глава 1. Основы оценки предприятия 1.1. Цели оценки и виды стоимости Цели оценки Цель оценки - расчет и ... - Зданий и сооружений: количество; тип, год, качество постройки; стиль, планировка, конструкции и т.д. На дату проведения обследования (24.01.2002) начаты работы по устройству котлована для здания, предполагается строительство универсального торгового комплекса, вся площадь ... |
Раздел: Рефераты по экономике Тип: учебное пособие |
Оценка воздействия объекта на окружающую среду | |
ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ, ПРИНЯТЫЕ ПРИ ПРОВЕДЕНИИ ОВОС Термины Определения Оценка воздействий на окружающую природную среду (ОВОС) Определение ... В помещениях зданий маслоцеха предусмотрена установка тепловых датчиков СПТМ-70 и дымовых датчиков СПД-3, с их креплением на потолке. Тяжелые металлы присутствуют в грунте вдоль автодорог. |
Раздел: Рефераты для военной кафедры Тип: курсовая работа |
Безопасность жизнедеятельности | |
Содержание Содержание. 1 Предисловие. 4 ВВЕДЕНИЕ. 6 ОСНОВЫ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ. ОСНОВНЫЕ ПОНЯТИЯ, ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ.. 6 Раздел I ... Они возникают при авариях и катастрофах, при взрывах и внезапных разрушениях зданий и сооружений. Вибрации в городской среде и жилых зданиях, источником которых является технологическое оборудование ударного действия, рельсовый транспорт, строительные машины и тяжелый ... |
Раздел: Рефераты по безопасности жизнедеятельности Тип: учебное пособие |
90 шпаргалок по БЖД 1 курс (1-2 семестр) | |
1.Содержание дисциплины "БЖД" ее цели и задачи: Безопасность жизнедеятельности представляет собой область научных знаний, охватывающих теорию и ... Вибрация по земле распространяется в виде упругих волн и вызывает колебания зданий и сооружений. Поиск пострадавших проводится путем сплошного визуального обследования территории, зданий, сооружений, цехов, транспортных средств и других мест, где могли находиться люди в момент ... |
Раздел: Рефераты по безопасности жизнедеятельности Тип: шпаргалка |
Здания и сооружения | |
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский ... При ТЭО отдельных конструктивных элементов зданий и сооружений в качестве расчетных единиц измерения для определения показателей сметной стоимости, затрат труда и потребности в ... Под ОСНОВАНИЕМ здания понимают массив грунта, расположенный под фундаментом и воспринимающий через него нагрузки от зданий и сооружений. |
Раздел: Рефераты по строительству Тип: учебное пособие |