Доклад: Закон радиактивного распада

Горохов А.В.

Свойства радиактивного излучения были изучены вскоре после открытия Беккерелем радиоактивности в 1896 г. Оказалось, что существуют три различных вида ядерного излучения (- ,- и ). После многолетних исследований было обнаружено, что - излучение состоит из ядер гелия 42He, - излучение - фотоны с очень высокой энергией, - излучение, как правило, состоит из электронов.

Установлено, что многие тяжелые ядра с Z 82 (Z = 82 соответствует ядру свинца) испытывают радиоактивный распад с испусканием - частицы. В - частице удельная энергия связи оказывается большей, чем в массивных ядрах (см. Рис. 2), поэтому альфа-распад энергетически возможен. Образец урана 238U испускает -частицы по следующей схеме:

238U --> 234Th + 4He + 4,2МэВ.

Спустя 4,5·109лет половина ядер образца 238U распадётся.

Теория альфа-распада построена Г.А. Гамовым в 1928 г.

В случае бета-распада более тщательные исследования показали, что некоторые ядра вместо электронов испускают их античастицы - позитроны, кроме того, испускание электронов или позитронов всегда сопровождается излучением нейтрино или антинейтрино. (Нейтрино - это элементарная частица с электрическим зарядом равным нулю, полуцелым спином 1/2 и нулевой (или очень малой) массой покоя.

Первая теория бета-распада была построена Э. Ферми в 1931 г.

Простейшим примером - распада является процесс превращения свободного нейтрона в протон с периодом полураспада 12 мин.:

n --> p + e- +

.

Символ [()] обозначает антинейтрино (то, чем отличаются нейтрино и антинейтрино см. в следующем разделе.)

Кроме хорошо известных -, -, - распадов в 1940 г. советскими физиками Г.Н. Флеровым и К.А. Петржаком открыт четвертый тип распада: самопроизвольное деления ядер урана на две примерно равные части. В 1970 была обнаружена протонная радиоактивность: выброс протона из ядра. Еще один вид распада - двухпротонную и двухнейтронную радиоактивность, предсказан в 1960 г. советским физиком-теоретиком В.И. Гольданским. Экспериментально этот вид распада еще не обнаружен.

Изложение основ теории радиоактивности значительно выходит за рамки программы "школьной физики", мы ограничимся только тем, что найдем зависимость числа нераспавшихся ядер N(t) от времени, используя экспериментально измеряемую величину - константу распада , которая равна вероятности распада в единицу времени. Установленный на опыте основной закон радиоактивного распада состоит в том, что отношение числа распавшихся за единицу времени ядер к общему числу ядер является постоянной величиной, зависящей только от сорта ядер.

Пусть количество ядер, которые еще не распались к моменту времени t равно N(t). При этом предполагается, что количество ядер все время макроскопически велико.

В момент времени t + dt число нераспавшихся ядер будет N(t + dt).

Поэтому за промежуток времени dt распадется N(t) - N(t + dt)  - dN ядер. Согласно приведенному выше определению мы получим вероятность распада , разделив долю распавшихся ядер - dN/N на время dt, то есть

 = -

dN


N dt

.

Отсюда следует, что

dN


dt

= -  N.

(2)

Предположив, что при t = 0 количество ядер было N0 и решая с этим начальным условием уравнение (2), найдем

N(t) = N0 exp( - t).

(3)

(График этой зависимости приведен на Рис. 3)

Рис. 3

Величин  называется активностью. Единица активности в СИ - беккерель (Бк), равный одному распаду в 1 с. Внесистемная единица - кюри (Ku): 1 Ku = 3,7·1010Бк.

Скорость распада характеризуется периодом полураспада T1/2 - промежутком времени, за который число радиоактивных ядер уменьшается в два раза. Полагая в формуле (3) t = T1/2, N(T1/2) = N0/2, получим

1 = 2 exp( -  T1/2).

Поэтому формуле (3) можно придать вид:

N(t) = N0



1


2



t/T1/2 .

Видно, что с течением времени количество ядер уменьшается по закону геометрической прогрессии.

Можно также определить среднее время жизни ядер:

 = -

0

t dN


N0

=

0

 t e- tdt = 1/.

Легко показать, что времена T1/2 и  связаны соотношением:

T1/2  0,69 ·.

Рис. 4

На Рис. 4 приведен пример бета - распада ядра натрия-24 (с периодом полураспада 15 час.). Распад идет с испусканием электрона с энергией 1,39 МэВ, (излучаемое антинейтрино не показано) и переходом в возбужденное состояние ядра магний -24, которое после последовательного излучения двух гамма-квантов переходит в основное (невозбужденное) состояние.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://ermine.narod.ru

Лекции по твердотельной электронике
Московский энергетический институт (технический университет) ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА Конспект лекций Москва, 2002 г. Содержание Лекция 1 5 1 ...
где f(E,T) - вероятность нахождения электрона в состоянии с энергией E, T -температура системы (в градусах К), k - постоянная Больцмана, F - энергия уровня Ферми (это ...
где G и U - соответственно скорость генерации и скорость рекомбинации (число электронов генерируемых или рекомбинирующих в единице объема в единицу времени), n - концентрация ...
Раздел: Рефераты по радиоэлектронике
Тип: реферат
Общая и неорганическая химия
Квантово-механическая модель атома. Квантовые числа. Атомные орбитали. Порядок заполнения орбиталей электронами Теория строения атома основана на ...
Главное квантовое число характеризует удалённость электрона от ядра и определяет его энергию (чем больше , тем больше энергия электрона и тем меньше энергия связи с ядром ...
Магические ядра )либо получаются при бета-распаде ядер с такими нейтронными числами.
Раздел: Рефераты по химии
Тип: учебное пособие
Радиационная безопасность при эксплуатации и ремонте оборудования ...
Федеральное агентство по атомной энергии Федеральное государственное унитарное предприятие "Российский государственный концерн по производству ...
В качестве единицы энергии (Е) различных радиоактивных излучений (альфа-частиц, бета-частиц, нейтронов и гамма-квантов) применяется электрон-вольт (эВ).
При захвате теплового нейтрона ядром водорода происходит реакция Н1(n,ѭ)D2, излучается гамма-квант с энергией 2,23 МэВ, а при захвате теплового нейтрона ядром азота - реакция N14(n ...
Раздел: Рефераты по безопасности жизнедеятельности
Тип: учебное пособие
Особенности работы счетчиков излучения
Министерство образования РФ. Новгородский Государственный Университет им. Ярослава Мудрого. Кафедра ОиЭФ. "Особенности работы счетчиков излучения ...
Бета-распад сопровождается вылетом из ядра бета-частицы, представляющей собой электрон или позитрон.
Так, радиоактивный кобальт-60 создает два гамма-кванта при каждом бета-распаде ядра, а у радиоактивного радня-226 излучение гамма-кванта наблюдается примерно в шести случаях из 100 ...
Раздел: Рефераты по физике
Тип: курсовая работа
Радиоактивность
ПЛАН: 1.Введения 2.Радиоактивность 3.Ядерные реакторы 4.Инженерные аспекты термоядерного реактора 5.Ядерная реакция. Ядерная енергетика. 6.Гамма ...
2.Радиоактивность
Явление радиоактивности, или спонтанного распада ядер, была открыта французским физиком А. Беккерелем в 1896 г. Он обнаружил, что уран и его соединения испускают лучи или частицы ...
Различают три типа b-распада: электронный, позитронный и захват орбитального электрона атомным ядром. тип Последний распада принято также называть К-захватом, поскольку при этом ...
Раздел: Рефераты по физике
Тип: реферат